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Algorithm Design for Resilient Cyber-Physical
Systems using an Automated Attack Generative

Model
Yu Zheng, Student Member, IEEE, , Ali Sayghe, Student Member, IEEE, and Olugbenga Moses Anubi, Senior

Member, IEEE,

Abstract—This paper presents a suite of algorithms for de-
tecting and localizing attacks in cyber-physical systems, and
performing improved resilient state estimation through a pruning
algorithm. High performance rates for the underlying detection
and localization algorithms are achieved by generating training
data that cover large region of the attack space. An unsupervised
generative model trained by physics-based discriminators is
designed to generate successful false data injection attacks. Then
the generated adversarial examples are used to train a multi-class
deep neural network which detects and localizes the attacks on
measurements. Next, a pruning algorithm is included to improve
the precision of localization result and provide performance guar-
antees for the resulting resilient observer. The performance of the
proposed method is validated using the numerical simulation of
a water distribution cyber-physical system.

Index Terms—Resilient Control and Estimation, False Data In-
jection Attack, Generative Model, Multilayer Perceptron, Prun-
ing algorithm

I. INTRODUCTION

Modern cyber-physical critical infrastructures (CPCI) are
facing fast-evolving cyber threats. Cyberattacks can strongly
impact the operation of the CPCIs. For instance, suspected cy-
ber intruder took control of the Prykarpattyaoblenergo power
system control center in western Ukraine in December 2015,
leaving 230,000 people without electricity for up to 6 hours.
That was the first time hackers have successfully targeted a
country’s power grid [1]. Also, cyber attacks in water systems
have already become a reality. In 2015, 25 cyber attacks were
disclosed in several water systems [2]. And recently in 2020, a
malicious cyber-attack attempted to raise the chlorine level in
Israel’s water supply to dangerous proportion [3]. Supervisory
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Control and Data Acquisition (SCADA) is a critical part of the
CPCI that is highly susceptible to cyberattacks. SCADA is re-
sponsible for collecting measurements from Remote Terminal
Units (RTU) and sending them to the Control Centers (CC)
to perform various functions such as contingency analysis,
optimal planning, state estimation (SE), etc. The primary
purpose of those functions is to maintain stable and secure
operation of the CPCI.

SE is considered a core function in the CCs, that regularly
performs in real-time to monitor the system states using
information collected from the SCADA systems and other
measurement devices. SE can also detect and identify bad data
that can cause a significant error in the resulting estimate. The
SE algorithm’s accuracy depends on how pure and accurate
the system measurements are. If any malicious or erroneous
measurements pass through undetected, it could mislead the
operators into making catastrophically wrong decisions.

Numerous studies have shown that SE is vulnerable to
False Data Injection (FDI) Attack, where an intruder aims to
hack multiple RTUs or even communication channels to insert
fake measurements to misguide the CCs operational process
[4]–[7]. Since FDI attack was introduced in [4], different
researchers have proposed various techniques for detection and
localization, including diagnostic robust generalized potential
[8], generalized likelihood ratio [9], fast Go-Decomposition
(GoDec) [10], Markov chain [11], Bayesian detection with
binary hypothesis [12], and cosine similarity matching scheme
[13] and some residual-based approaches such as the Kullback
Leibler distance method [14], unscented Kalman filter [15], χ2

failure detector [16] and a residual-based localization scheme
[17]. However, due to their dependency on the system model,
the associated model uncertainty would affect their accuracy,
and if the FDI attacks are designed properly, these model-
based or residual-based detectors can easily be bypassed [4],
[17].

To overcome the limitations of traditional residual-based
bad data detection approaches, data-driven solutions based on
machine learning algorithms have been widely adopted for
detecting and localizing of FDI attacks due to their fast exe-
cution times and accurate results [18]–[24]. [18] utilized and
tested various machine learning algorithms in detecting FDI
attacks. The results showed that machine learning algorithms
can detect FDI attacks accurately and faster. [19] proposed a
deep neural network algorithm that can automatically detect
and localize FDI attacks in the power system. The proposed
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method can integrate the underlying graph topology of the
grid and spatial correlations of its measurement data to jointly
detect and and localize the FDI attacks in power systems. [24]
proposed a hierarchy of neural networks with capability of
detecting novel attacks by training networks to understand the
entire normal space instead of attack space.

In addition to attack detection and localization, resilient
estimation approaches focus on maintaining the correctness
of state estimates in the presence of adversarial attacks, which
enables resilient operation of the CPSs [25]. Although attacks
are possibly unbounded and can be designed to ”fool” `2
observers [4], [16], the attack signals are sparse due to resource
limitation of the attackers. Based on this characteristics, the
authors in [26] proposed an `1 minimization program for
estimator design on linear systems and proposed an upper-
bound on the total number of compromised measurements
for guaranteed secure estimation. Some extension work con-
sidered robustness on resilient `1 estimation in presence of
modeling error [27], worst-case estimation error bound in
presence of bounded noise [28], and `1 − `2 estimation
scheme [29]. And some iterative resilient observer designs has
been proposed for determinant system, such as event-trigger
Luenburger Observer [30] and Gramian-based estimator [31].
For stochastic system, several attack-resilient control designs
have also been studied [32], [33]. Furthermore, to push the
limit on the number of compromised sensors below which
secure estimation would be guaranteed, the prior information
obtained from detection approaches could be considered in
the resilient estimation design. Existing results have used
such information as measurement prior, support prior and
state prior. In our previous work [34]–[36], resiliency of
the observer is enhanced by utilizing a measurement prior,
generated by Gaussian process regression, in a constrained `1
observer scheme. And in [37], a resilient unscented Kalman
filter was proposed based on a improved support prior. In [17],
a weighted `1 observer is designed to exploit the support prior
more rigorously.

Contribution: This paper proposes an enhanced resilient
solution for linear CPSs subject to FDI attacks. It is a
hybrid physics-based and data-driven, detection-based resilient
estimation scheme. To train the data-driven detection method,
abundant adversarial attack examples are often required.
Model-based attack generators such as [17], [38] generally
adopt optimization-based mechanisms which are computation-
ally expensive, even NP-hard. Most traditional data-driven
attack generators [39], [40], in literature, still require the attack
examples with labels for training. In this paper, we proposed
an unsupervised generative model (GM) trained by multiple
physics-based discriminators derived from the plant model.
Secondly, due to the inherent uncertainty on the precision of
data-driven detection and localization approaches, a pruning
algorithm is proposed to improve the localization precision
further without training. The resulting precision guarantee
is quantified, subject to the aggressiveness of the pruning
algorithm. Thus, the states of the system can be recovered
correctly, thereby maintaining the operational performance of
the CPS while attack is underway.

The reminder of the paper is organized as follows: All the

notations and the necessary mathematical tools used in the
development are given in Section II. In Section III, the model
of CPS is described. In Section IV, a formal definition of
successful FDI attack is presented, and a data-driven gener-
ative model is proposed to generate successful FDI attacks.
In Section V, detection and localization approaches based
on multi-class MLP is designed and a pruning algorithm is
included to improve the localization precision. In Section VI,
a resilient `2 observer design is done to maintain correct
state estimation under adversarial attacks. Conclusion remarks
follow in Section VIII.

II. NOTATION AND PRELIMINARY

The following notations and definitions are used throughout
the paper: R,Rn,Rn×m denote the space of real numbers,
real vectors of length n and real matrices of n rows and
m columns respectively. R+ denotes the space of positive
real numbers. Normal-face lower-case letters (e.g. x ∈ R)
are used to represent real scalars, bold-face lower-case letters
(e.g. x ∈ Rn) represent vectors, while normal-face upper-
case letters (e.g. X ∈ Rn×m) represent matrices. X> denotes
the transpose of the matrix X . The spectral radius of the
square matrix X is denoted by ρ(X). X† ,

(
X>X

)−1
X>

denotes the Moore-Penrose inverse. 1n and In denote vector
of ones and the identity matrix of size n respectively. Let
T ⊆ {1, . . . , n}, then, for a matrix X ∈ Rm×n, XT ∈
R|T |×m is the sub-matrix obtained by extracting the rows
of X corresponding to the indices in T . T c denotes the
complement of a set T and the universal set on which it is
defined will be clear from the context. We use IT (or simply
as I when T is clear from context) to represent a T -time
window [i−T +1, i]. In the same vein, I−1 is used to denote
the time window [i− T, i− 1] accordingly. The support of a
vector x ∈ Rn is a set of the indices of nonzero entries in
x, defined as supp(x) , {i ⊆ {1, . . . , n}|xi 6= 0}. A vector
x ∈ Rn is said to be k-sparse if |supp(x)| ≤ k, and Σk
denotes the subspace of k-sparse vectors. a moving-horizon
vector xI ∈ Σk means all composed vectors xj ∈ Σk, j ∈ I .
argsort ↓ (x) denotes a function that returns the sorted indices
of vector x in descending order of the magnitude of xi.
The symbol � denotes element-wise multiplication of two
vectors and is defined as z = x � y, where zi = xiyi.
The operator ‖z‖1,w ,

∑n
i=1 wizi is a weighted 1-norm of a

vector z ∈ Rn with the weight vector w ∈ Rn. A continuous
function f : [0, a) → [0,∞) is said to belong to class K if
it is strictly increasing and f(0) = 0. Both ex and exp(x)
are used to represent the exponential function. The symbol ∗
denotes the convolution operator of two vectors; given two
vectors u ∈ Rm and v ∈ Rn,

u ∗ v ,
∑
j

ujvk+1−j .

The symbol E denotes the expectation operator of a ran-
dom variable. z ∼ B(1, p) represents a Bernoulli distributed
random variable z with E[z] = p, then the sum of inde-
pendent Bernoulli random variables {z1, z2, · · · , zN} with
zi ∼ B(1, pi) satisfies Poisson-binomial distribution, and the
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closed-form expression of the probability density function
(pdf) of

∑
i zi is given by [41]:

Pr

{
N∑
i=1

zi = k

}
= rk, k = 0, · · · , N, (1)

where

r =

N∏
i=1

pi ·
[
−s1

1

]
∗
[
−s2

1

]
∗ · · · ∗

[
−sN

1

]
, (2)

with si = − 1−pi
pi

. The following lemma presents a result that
will be useful for later developments in this paper.

Lemma II.1. Consider a non-decreasing convex function Φ :
R→ R+ with Φ(0) = 1; Then

E[Φ(z)] ≥ Pr {z > 0}

.

Proof. Based on the definition of expectation,

E[Φ(z)] =
∑
x∈R

Φ(x)Pr {z = x}

=
∑
x≤0

Φ(x)Pr {z = x}+
∑
x>0

Φ(x)Pr {z = x} .

Since Φ(x) > 0, then

E[Φ(z)] ≥
∑
x>0

Φ(x)Pr {z = x} .

Also, since Φ is non-decreasing and Φ(0) = 1, we have that
Φ(x) > 1 ∀x > 0. Then

E[Φ(z)] ≥
∑
x>0

Pr {z = x} = Pr {z > 0} .

III. MODEL DEVELOPMENT

The following linear model is considered to describe the
physical behavior of a CPS:

xi+1 = Axi +Bui

yi = Cxi
(3)

where xi ∈ Rn is the state vector, ui ∈ Rp the control input
and yi ∈ Rm1 the sensor measurement. The corresponding ap-
propriately dimensioned system matrices A,B,C are assumed
to satisfy the following.
A1. The pair (A,B) is controllable
A2. There exists a positive integer k0 ≤ m1 such that the

pair (A,CS) is observable for all S ⊂ {1, 2, · · · ,m1}
with |S| ≥ k0

A3. ρ
(
AT
)
> 0, where the integer T is a specified horizon

parameter.
To estimate the system states from sensor measurements,

the following receding horizon observer is considered:

x̂i = AT z + FuI−1, (4)

where

F =
[
AT−1B AT−2B . . . B

]
,

and

z = arg min
x∈Rn

‖yI −H1uI−1 −H0x‖2 (5)

= H†0yI −H
†
0H1uI−1,

where

H0 =


CA
CA2

...
CAT



H1 =


CB 0 · · · 0
CAB CB · · · 0

...
...

. . .
...

CAT−1B CAT−2B · · · CB

 .
(6)

Thus,

x̂i = ATH†0yI +
(
F −ATH†0H1

)
uI−1, (7)

Consequently, the following control law is considered:

ui = Kpx̂i, (8)

where x̂i ∈ Rn is the state estimate in (7), which is well known
(see [42] for example) to achieve lim

i→∞
‖x̂i − xi‖2 = 0, and the

gain matrix Kp is designed to achieve ρ (A+BKp) ∈ (0, 1).
Substituting (8) into the dynamics in (3) yields

xi+1 = Axi +BKpx̂i

= (A+BKp)xi +BKp (x̂i − xi) ,

which implies that

xi = (A+BKp)
i
x0 +

i∑
j=0

(A+BKp)
i−j

BKp (x̂j − xj).

Thus,
∞∑
i=0

‖xi‖2 ≤

( ∞∑
i=0

ρ
(

(A+BKp)
i
))
‖x0‖2

+

∞∑
i=0

i∑
j=0

ρ
(

(A+BKp)
i−j

BKp

)
‖x̂j − xj‖2 .

Therefore, the resulting closed loop dynamics satisfy
∞∑
i=0

‖xi‖2 ≤ α0 + ϕ

( ∞∑
i=0

‖x̂i − xi‖2

)
for some positive constant α0 < ∞ and a class K functional
ϕ. This implies that the origin of the closed loop dynamics is
asymptotically stable.

IV. AUTOMATED ATTACK GENERATION

In this section, a generative model is developed for generat-
ing successful FDI attacks targeting the model in (3). Including
attack signals in the CPS model in (3) yields the adversarial
measurement model

yI = H0xi−T +H1uI−1 + eI , (9)
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where e1:T =
[
e>i−T+1 e>i−T+2 . . . e>i

]>
contains the

attack vectors within the moving window [i − T + 1, i].
Consequently, substituting (9) into (7) yields

x̂i = ATxi−T + FuI−1 +ATH†0eI

= xi +ATH†0eI . (10)

Thus, the instantaneous estimation error is given by

x̃i = x̂i − xi

= ATH†0eI . (11)

In general, attackers aim to achieve maximum perturbation of
certain critical system output without triggering an alarm from
the bad data detection mechanism. For this paper, a residual-
based bad data detection scheme is used. Let

rI , yI −H1uI−1 −H0z, (12)

where z is given in (5), be the residual vector associated with
the receding horizon estimator in (7). Given a threshold value
τ ∈ R, the bad data indicator for the windowed measurement
history is given by

BDD(yI) =

{
0 if ‖ri‖ ≤ τ
1 otherwise. (13)

Substituting (5) and (9) into (12) yields

rI =
(
I −H0H

†
0

)
(yI −H1uI−1)

=
(
I −H0H

†
0

)
(H0xi−T + eI) . (14)

Thus, from the attacker’s perspective, it is desirable to keep
the quantity

∥∥∥(I −H0H
†
0

)
eI

∥∥∥
2

as small as possible.
Next, let yc = Ccx be a vector of critical output targeted

by the attacker. We remark that this is not an attempt to
identify a priori the particular outputs targeted by an attacker.
Rather, we postulate that there are critical functional outputs
which the resilient system designer desires to protect against
adversarial targeting. Thus, we define FDI attacks which target
those measurements specifically so that the resulting resilient
observer can offer the desired protection. Substituting the
control law in (8) into the linear model in (3) yields the closed
loop system

xi+1 = Āxi + B̄x̃i,

= Āxi + B̄ATH†0eI . (15)

where Ā = A+BKp and B̄ = BKp. Therefore,

yci+1
= CcĀxi + CcB̄A

TH†0eI . (16)

Thus, from the attacker perspective, it is desirable to keep the
quantity

∥∥∥CcB̄ATH†0eI∥∥∥
2

as big as possible.
We now have all the ingredients to formally define and

synthesize the generative model for successful FDI attacks in
CPSs.

Definition 1 (Successful FDI attack [16]). Consider the CPS
in (3). Given a positive integer k < m, the attack sequence
eI ∈ Σk ⊂ R(T+1)m, is said to be (ε, α)-successful if∥∥∥CcB̄ATH†0e∥∥∥

2
≥ α and

∥∥∥(I −H0H
†
0

)
e
∥∥∥
2
≤ ε. (17)

In the above definition, k quantifies the attack sparsity level
per time. Specifically, it is the maximum number of attacks
allowed at each time index. Examples of such successful FDI
attacks can be found in literature; a physics-based FDI attack
generator capable of fooling `2 observer, such as Kalman filer,
can be found in [16] and an optimization-based FDI attack
generator capable of fooling stronger `1 observer was proposed
in [17]. However, these FDI attacks are either computationally
too expensive or too conservative to implement on fast real-
time systems. In order to circumvent these limitations, we
drew inspiration from the well-know generative adversarial
networks (GAN) [43] to build generator models for the el-
ements of the set specified by inequalities in (17).

The Definition 1 defines a target set of successful attack
signals of the form:

S(α, ε) ,
{
e | ‖M1e‖2 ≥ α, ‖M2e‖2 ≤ ε

}
. (18)

Thus, the goal of generative model is to learn how to generate
elements of that set.

Definition 2. Given a set S ⊂ Rn and a prior distribution
Pz(z), a generative model is a mapping of the form f : z 7→
Rn such that f(z) ∈ S with a high probability.

We consider a generative model of the form G(z;θg),
where θg is a tunable parameter vector that will be prescribed
to maximize the likelihood of generating elements in S.
Specifically, G is taken as an artificial neural network whose
input is a random number z sampled from a prior distribution
Pz , with weights and biases contained in θg . Next, similarly
to the GAN framework, G(z;θg) is trained using a fixed
discriminator defined by the boundary functions ‖M1e‖2 and
‖M2e‖2 of S.

Fig. 1. Physics-based generative model and training process

The training process is shown in Fig. 1. The output of
the generator is passed, through the discriminator boundary
functions, to a loss function designed such that the weights of
the generator network are trained to ensure that the outputs of
the discriminators satisfy the constraints. Since the constraints
are threshold-based, we choose an indicator-like loss function:

J(e) = ReLU(α− ‖M1e‖2) + ReLU(‖M2e‖2 − ε). (19)

Consequently, the generator is trained by solving the un-
constrained optimization problem

θ∗g = arg min E
z∼Pz

J(G(z;θg)) (20)

via back propagation.
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V. DETECTION AND LOCALIZATION

Through an automated attack generation by a well-trained
generative model, an adversarial training dataset could be
constructed and used to improve the precision of the resulting
attack detection and localization algorithm. In this section,
a detection and localization approach is given by training a
multi-layer perceptron (MLP) on the generated attack dataset.
In addition, by analyzing the uncertainty on the MLP’s output,
a pruning algorithm is proposed to improve the localization
precision further.

The term attack location refers to sensor channels
(or indices) through which the attack signals are added to the
system. Let T denote the actual attack support, then we define
its indicator element-wise as:

q(i) =

{
0 if i ∈ T
1 otherwise. (21)

Next, the definitions of detection and localization are given:

Definition 3 (Detection). Given a measurement vector y ∈
Rm, detection is a function D : Rm → {0, 1} whose output
D(y) indicates the existence of attack signal in the input y.

Definition 4 (Localization). Given a measurement vector
y ∈ Rm, localization is a function L : Rm → {0, 1}m
whose output indicates detection result for each measurement
channel. In particular, it is an estimate of the attack support
T , denoted by T̂ , and its indicator q̂ is defined similarly to
(21).

As a universal function approximators, shown in Cybenko’s
theorem [44], MLPs are used to describe mathematical models
via a regression scheme. Since classification is a special
regression process with categorical response, MLPs are often
designed as classification algorithms. Attack detection and
localization is a multi-line binary classification task. With
adequate training dataset generated by the automated attack
generator, MLP’s advantages of being a learning network
could be fully utilized.

The MLP used in this paper is a three-layer neural network
containing two LeakyReLU hidden layers and one Sigmoid
output layer, and the final classification outputs are 0 (for
attack) if the corresponding MLP output is less than 0.5,
otherwise they are 1 (for no attack). The output layer’s size is
the same as the input size and equal to the number of attacks.
Consequently, the MLP is given by

g(y;θ) , φ

(
n∑
i=1

wiyi + b

)
, (22)

where φ is the activation function of the output layer and θ is
a vector of tunable weights and biases. Then, the localization
output is given by

q̂i =

{
1 if g(yi;θ) ≥ 0.5
0 otherwise. (23)

Next, a supervised learning algorithm, via back propagation,
is used to train the MLP based on the below binary cross-
entropy loss function (log-loss function):

J(θ) =
1

N

N∑
i=1

(
q(i) log g(y(i);θ)

+(1− q(i);θ) log(1− g(y(i);θ))
)

(24)

where (y(i),q(i)) is the ith training data, and N is the total
number of data points.

Since the MLP-based attack detection and localization
method described above is a multi-line binary classification,
the agreement between the localization result q̂ and the actual
attack support q can be described by a Bernoulli distributed
agreement variable εi ∼ B(1,pi) as

qi = εiq̂i + (1− εi)(1− q̂i), (25)

where pi = E[εi] = Pr {εi = 1} is the confidence of the
localization algorithm at i channel, which is often obtained
by the true rate in Receiver Operator Characteristic (ROC) of
the algorithm.

Consequently, the precision of the resulting support prior
indicator q̂ is defined as follows:

Definition 5 (Positive Prediction Value, Precision, PPV [45]).
Given an estimate q̂ ∈ {0, 1}N of an unknown attack support
indicator q ∈ {0, 1}N , PPV is the proportion of q that is
correctly identified in q̂. It is given by

PPV =
‖q� q̂‖`0
‖q̂‖`0

. (26)

Next, with the attack localization result T̂ , the esti-
mated support of safe nodes can be represented as T̂ c =
{j1, j2, · · · , j|T̂ c|}. A Pruning Algorithm is proposed to prune
the most possible erroneous localization results in T̂ c.
The first step is to obtain a trust integer lη(≤ Tm) based
on the confidence of the localization results p. Given a
reliability level η ∈ (0, 1), the trust integer lη is defined as
the maximum number of safe nodes correctly localized in T̂ c
with a probability of at least η,

lη , max

k
∣∣∣∣Pr

∑
i∈T̂ c

εi ≥ k

 ≥ η
 . (27)

Let

r̄ ,


r0
r1
...

r|T̂ c|

 =

|T̂ c|∏
i=1

p(ji)

[
−sj1

1

]
∗
[
−sj2

1

]
∗ · · · ∗

[
−sj|T̂ c|

1

]
,

(28)
where sji = − 1−pi

pi
. Then, Pr

{∑
i∈T̂ c εi = k

}
= r̄k. Thus

(27) becomes

lη = max

{
k

∣∣∣∣ k∑
i=0

r̄i ≤ 1− η

}
. (29)
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The second step is to obtain a Pruned Support Prior T̂ cη of
size lη through a robust extraction:

T̂ cη =
{

argsort ↓ (p� g(y;θ))
}lη
1
, (30)

where {·}lη1 is an index extraction from the first elements to
lη elements. To obtain a pruned support prior consistent with
the model assumptions in Section III, its size should satisfy
lη ≥ k0, where k0 is a lower bound of T̂ cη such that (A,CT̂ cη

)

is observable. This can be guaranteed by the proper choice of
the reliability level η, as given in the following theorem.

Theorem V.1. Given a measurement redundancy preservation
parameter k0 > 0, the size of pruned support prior satisfies
lη ≥ k0 if

η ≤ 1−
|T̂ c|∑
i=0

ek0−ir̄i, (31)

where r̄ is given by (28), and T̂ c is the estimated support of
safe nodes from the attack localization algorithm.

Proof. According to (27), a sufficient condition for lη ≥ k0 is

Pr

∑
i∈T̂ c

εi ≥ k0

 ≥ η,
which is equivalent to:

Pr

k0 −∑
i∈T̂ c

εi ≤ 0

 ≥ η
and

Pr

k0 −∑
i∈T̂ c

εi ≥ 0

 ≤ 1− η. (32)

According to Lemma II.1, let z = k0 −
∑
i∈T̂ c εi, and take

Φ(z) = exp(z) yields a sufficient condition for (32) as

E

exp

k0 −∑
i∈T̂ c

εi

 ≤ 1− η,

≡ ek0E

exp

−∑
i∈T̂ c

εi

 ≤ 1− η. (33)

Since Pr
{∑

i∈T̂ c εi = k
}

= r̄k, it follows that

E

exp

−∑
i∈T̂ c

εi

 =

|T̂ c|∑
k=0

e−kPr

∑
i∈T̂ c

εi = k


=

|T̂ c|∑
k=0

e−kr̄k. (34)

Combining (33) and (34) yields

|T̂ c|∑
i=0

ek0−ir̄i ≤ 1− η. (35)

Finally, an upper bound on η is obtained as (31).

Remark 1. From (31), it is clear that, necessarily, the upper
bound should be strictly positive. This yields the following
pruning requirement on the localization performance param-
eters:

|T̂ c|∑
i=0

e−ir̄i < e−k0 . (36)

If this holds, according to the assumption A2, with at least
k0 safe nodes remaining in the pruned support prior T̂ cη ,
(A,CT̂ cη

) will be observable. Thus the asymptotic convergence
of the estimation error is guaranteed.

Moreover, it was shown in [17] that the precision PPVη of
the pruned support prior T̂ cη given by (30) achieves

Pr {PPVη = 1} ≥ η. (37)

This indicates that, with the probability of at least η, the mea-
surement nodes contained in T̂ cη are all safe, and (A,CT̂ cη

) is
observable according to Remark 1. Thus, with the probability
of at least η, the exact state estimation can be achieved by
using `2 observer designed based on (A,CT̂ cη

). Finally, the
Algorithm 1 summarizes the attack detection and localization
using automated attack generation and pruning operation.

Algorithm 1: Attack detection and localization with
automated attack generation and pruning
I. Offline: Dataset generation and training.

1) Given time horizon T , prepare M1,M2 matrices for
physics-based discriminator ← (14), (16);

2) Given the number of attacks |T |, randomize attack
support T , and obtain its indicator q ← (21);

3) Given attack indexes α, ε, train the generative model
(GM) by solving the optimization problem in (20);

4) Generate attack dataset {Y } using the trained GM.
Evaluate generated attack dataset via simulation.

5) Return the effective subset of attack dataset as the
training dataset {Y,q}.

6) Train the MLP in (22) using the generated dataset
{Y,q} via backpropagation.

II. Online: Localization and pruning
1) Input real-time measurements y, obtain the

classification result q̂ ← (22), (23);
2) Pruning to obtain the pruned support prior T̂ cη (q̂η) ←

(29), (30).
Output: T̂ cη (pruned support prior)

VI. RESILIENT ESTIMATOR

In this section, the `2 observer in (7) is redesigned based
on the pruned support generated by the Algorithm 1 in order
to maintain secure state estimation subject to FDI attack. The
scheme of the resilient `2 observer is shown in Fig. 2. The
attack detection and localization algorithm identifies the loca-
tions of attacks and return an estimate of the support of safe
nodes T̂ c. Then the pruning algorithm is used to downselect
to a subset of T̂ c based on the localization confidence. Finally,
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the downselected subset of measurements yT̂ cη
is used in the

`2 observer.

Fig. 2. Schematic diagram of resilient `2 observer

Given the pruned support T̂ cη within the moving window
[i− T + 1, i], the resilient `2 observer is given by:

x̂
′

i = ATH†
0,T̂ cη

yT̂ cη
+

(
F −ATH†

0,T̂ cη
H1,T̂ cη

)
uI−1, (38)

where H0,T̂ cη
, H1,T̂ cη

are defined similarly to (6) using CT̂ cη in
place of C, and yT̂ cη

is part of the measurements indexed in

T̂ cη . According to (37), yT̂ cη contains only clean measurements
with a probability of at least η. The next result gives the error
bound of the resulting resilient estimator.

Theorem VI.1. Given a pruned support T̂ cη from (30). Sup-
pose η satisfies (31) with the underlying attack localization
algorithm satisfying the performance criterion in (36). Then,
with the probability of at least η, the resilient estimator in (38)
satisfies the error bound,

‖x̂
′

i − x?i ‖2 ≤ ‖x̂i − x?i ‖2 (39)

where x̂
′

i, x̂i are the state estimates from (38) and (7) respec-
tively, x? is the actual state vector.

Proof. Using triangle inequality of vector norm yields

‖x̂
′

i−x?i ‖2 = ‖x̂
′

i− x̂i+ x̂i−x?i ‖2 ≤ ‖x̂
′

i− x̂i‖2 +‖x̂i−x?i ‖2
(40)

Claim: ‖x̂′

i − x̂i‖2 = 0
Proof of Claim: Since ρ(A>) > 0, using the relationship x̂i =
AT z+FuI−1 and x̂

′

i = AT z
′
+FuI−1, it is seen that ‖x̂′

i−
x̂i‖2 = 0 is equivalent to ‖z′ − z‖2 = 0, where z and z

′
are

given by

z = H†0yI −H
†
0H1uI−1

= H†0H0xi−T (41)

and

z
′

= H†
0,T̂ cη

yT̂ cη
−H†

0,T̂ cη
H1,T̂ cη

uI−1

= H†
0,T̂ cη

H0,T̂ cη
xi−T +H†

0,T̂ cη
eT̂ cη

(42)

respectively. Since the pruned support prior is generated by
(30), then (37) holds, which implies that, with the probability
of at least η, eT̂ cη = 0. Thus, (42) becomes

z
′

= H†
0,T̂ cη

H0,T̂ cη
xi−T . (43)

Then combining (41) and (43) yields

‖z
′
− z‖2 =

∥∥∥∥(H†
0,T̂ cη

H0,T̂ cη
−H†0H0)xi−T

∥∥∥∥
2

. (44)

Since η satisfies (31) and the underlying attack localization
algorithm satisfies the performance criterion in (36), then
|T̂ cη | > k0 which implies (A,CT̂ cη

) is observable according to
the assumption A2. Then, based on the definition of H0,T̂ cη

and
H0, they are both full rank. Therefore, in case of k0 < m1, the
Moore-Penrose pseudo-inverses can be directly calculated as
H†

0,T̂ cη
= (H>

0,T̂ cη
H0,T̂ cη

)−1H>
0,T̂ cη

and H†0 = (H>0 H0)−1H>0 .

Then ‖z′ − z‖2 = ‖(I − I)xi−T ‖2 = 0. The claim is proved.
Thus, (40) implies (39).

By using `2 observer in (7), the attack-free state estimation
error ‖x̂i−x?i ‖2 converges to zero as i goes infinity. According
to (39), ‖x̂i − x?i ‖2 also goes to zero in the limit.

VII. SIMULATION

In this section, the corresponding improvement of resiliency
due to the automated attack generation is shown in simulation
by implementing Algorithm 1 and the resilient observer in (38)
on a water distribution system.

Fig. 3. Block diagram depiction of a water distribution system under FDI
attacks (black solid are water pipelines, blue dotted lines are wireless data
transmission lines for sensors data and control commands, orange dotted lines
are attack injection route)

The water distribution system, shown in Fig. 3, contains
10 distributed operating tanks and 1 storage tank. The goal is
to regulate all operating tanks’ water levels around desired
values. The magnetic valves V1 − V10 at the entrance of
operating tanks are controlled to adjust the water level of water
tanks, and the manual valves M1 −M10 can be manipulated,
at the demand point, to use the water from the corresponding
tanks. The effect of these valves is modelled as the random
demands d in (45). The valves at the storage tank are fixed at a
constant opening value. For each operating tanks, two sensors,
water level meter and pressure sensors (L1 L10), are installed.
The pressure sensors measure the difference of water level
between adjoining tanks. The water level adjustment process
is approximated by the LTI model:

xi+1 = Axi +Bui − di,

yi = Cxi + vi + ei.
(45)
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Fig. 4. The percentage of observable (A,CS) increases with the size of the
pruning set |S|. The percentage of observable (A,CS) is calculated as the
ratio of the number of observable (A,CS) to the total number of samples
(=50000).

where, x,u ∈ R10, y,v ∈ R40 are vector of water level,
control input of magnetic valves, sensor measurements, and
measurement noise respectively, d ∈ R10 is the vector of
random demands, and e ∈ R40 is the injected FDI attacks.
Given target water level xd = 0.5110, a proportional controller
is used

ui = −K(x− xd)−B−1(A− I10)xd.

The critical measurement in this scenario is the sum of all
water levels of operating tanks, thus, the critical measurement
matrix is given by Cc = [1 1 · · · 1] ∈ R1×10. Fig. 4 shows
the probability of the pair (A,C) remaining observable after
pruning with the random support S of different size. The result
indicates that the system is still observable for certain if at
least 27 measurements remain after pruning. According to the
Remark 1, the asymptotic convergence of estimation error is
guaranteed after the pruning algorithm if the MLP localization
algorithm satisfies the condition in (36) with k0 = 27. If this
condition is violated, the pruning algorithm shall not be used.

Next, the Algorithm 1 is implemented and the results
of simulation are shown in three steps: automated attack
generation, training data preparation and MLP training, and
Monte-Carlo simulation for resilient `2 observer with different
attack detection and localization strategies.

A. Automated attack generation

A fixed time step of Ts = 0.01s is used and the moving-
window size is set as T = 8Ts. With different number of
attacks, the transfer matrices M1,M2 are calculated based on
the corresponding random attack support, then the generator
(20) is trained as shown in Fig. 1. Due to the uncertainty in
the discriminator caused by measurement noise and random
demands, the threshold values are chosen from experience
as α = 0.2, ε = 0.6. The trained generator is then used
to generate attacks during simulation and also augment the
dataset used for training the localization MLP.

Fig. 5. A testing result of generated attacks injected through 25% mea-
surements nodes of the water distribution system. (attack support T =
{2 6 8 11 12 15 16 24 25 33}. Left: T -horizon cumulative resid-
ual, Right: critical measurement at each time step.)

Fig. 5 shows a typical example of the performance of 10
attacks. The left figure shows that the T -horizon cumulative
residual under attacks has small deviation from the nominal
T -horizon cumulative residual, which means the attacks are
hiding in the noise. However, the right figure shows that
the critical measurement has obvious deviation from nominal
critical measurement after attacks are injected, which means
the generated attacks inject targeted biases in the system
successfully.

B. MLP training

To show one of the merits of the proposed automated attack
generation scheme, two training datasets are prepared: one
produced by random additive signals on measurements and
the other augments the dataset with attack samples generated
by the trained generator. Next, two MLP classifiers are trained
on the two datasets respectively. Fig. 6 shows that the MLP
classifier (MLP2) trained by the second dataset has better lo-
calization precision. The mean precision of MLP1 is 73.87%,
and the mean precision of MLP2 is 83.31% on a testing set
of successful FDI attacks. Clearly, MLP2 has successfully
shifted the localization precision to the right, indicating better
performance overall.

As shown in Fig. 4, full observability can be guaranteed
with certainty if k0 = 27 measurements remains after pruning.
For this, we evaluate the sufficient condition in (36) on
MLP1 and MLP2. First, the two MLPs are run on 200000
cases generated by the trained generative model. From the
results, the confidence vectors of the MLPs are estimated by
calculating the true rates at all 40 measurement nodes; for
node i, pi = TPi+TNi

Pi+Ni
. Next, a sample based experiment

is performed. For each support size |T̂ cj | ∈ {25, 26, . . . , 40},
we generated min

{
40C|T̂ cj |

, 50000
}

unique supports T̂ c, and
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Fig. 6. A sample-based comparison of the performance of two MLP classifiers
on a testing set of successful FDI attacks. (MLP1: trained only with random
attack generation, MLP2: trained with random attack generation and the
proposed automated attack generation, 50000 test cases are used.)

Fig. 7. A sample-based comparison of post-pruning observability for MLP1
and MLP2. (50000 test cases are used. The y axis for the top two subplots
Pr(kj ≥ k0) is the sample estimate of the probability of at least k0
measurements remaining after pruning. The black lines in the bottom subplots
show the mean value of kj that is the number of measurements remaining
after pruning, while the red and green dots are the minimum and maximum
values of kj ’s respectively.

evaluated the right hand side of (36) for each unique support
as follows:

kj = − ln

|T̂ cj |∑
i=0

e−ir̄i

 ,

where the Poisson-binomial probability density vector r̄i is
calculated, using the confidence vectors of MLPs, based on
(28). For each |T̂ cj | ∈ {25, 26, . . . , 40}, and each MLP, the
sample probability of the event kj ≥ k0 and the expected
value of kj are shown in Fig. 7. The results show that MLP2
has a bigger chance of preserving post-pruning observability.

Indeed, according to the figure, post-pruning observability
cannot be guaranteed when MLP1 is used. By considering
the sample-based analysis in Fig. 6 and Fig. 7 together, it is
seen that MLP performs better with the proposed automated
attack generation.

Next we shall present a comparison of MLP1 and MLP2
in the resilient `2 estimation scheme for the water distribution
system to show their effects on the estimator’s resiliency.

C. Resilient `2 observer

Finally, the trained MLPs with pruning algorithm are used
in a real-time simulation of the water distribution system.
The resilient `2 observer in (38) is included to perform the
state estimation. The goal of this simulation is to estimate the
probability of achieving resilient performance, using different
attack detection strategies with the `2 observer. Thus, a Monte-
Carlo experiment is carried out. The input of the experiment
are generated attacks by the trained attack generator. The
outputs are: (1) the probability of sustaining normal op-
eration (pSNO) estimated as the ratio of the instances where
the deviation of critical measurement from the nominal value
is below a given threshold to the total number of instances,
(2) the probability of triggering an alarm (pTA) estimated
as the ratio of the instances where the deviation of detection
residual from the nominal value is beyond a given threshold to
the total number of instances. Clearly, bigger values of pSNO
and pTA indicate better resiliency.

The input attack dataset includes different number of attacks
from 1(2.5%) to 20(50%), and for each number of attacks,
we generated 20 datasets corresponding to different attack
scenarios. Successful attacks could not be found when the
number of attacks is equal to 1. Thus, that case is excluded.
For the remaining cases, with the number of attacks ranging
from 2 to 20, attack supports were generated randomly.

Next, the system simulation process shown in Fig. 2 was
carried out with different attack detection strategies: MLP1,
MLP1 with pruning, MLP2, and MLP2 with pruning. During
the system simulation, the T -horizon cumulative detection
residual rI is calculated based on (14), and the critical
measurement yci+1 is also calculated based on (16). Then the
performance, in terms of deviation ratios of the residual ∆r
and the critical measurements ∆y respectively, are evaluated
using

∆r =
|(rI − rd)− (r?I − rd)|

max (|(rI − rd)− (r?I − rd)|)
,

∆y =

∣∣∣(yci+1
− ycd)− (y?ci+1

− ycd)
∣∣∣

max
(∣∣∣(yci+1 − ycd)− (y?ci+1

− ycd)
∣∣∣) ,

where rd is the residual vector in the corresponding
attack-free and noise-free case, ycd = Ccxd is the de-
sired critical measurement vector corresponding to the de-
sired states xd. Consequently, pTA and pSNO are esti-
mated as pTA = 1

N

∥∥∥∆r ≥ τ1|y?c |
max(|yc−y?c |)

∥∥∥
`0

and pSNO =

1
N

∥∥∥∆y ≤ τ2|r?|
max(|r−r?|)

∥∥∥
`0

respectively, where N is the total
number of time instances from the start of attack injection.
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The thresholds τ1 = 1% and τ2 = 3% are set based on the
responses of the attack-free simulation.

Fig. 8. A comparison of the `2 observer resiliency with different attack
detection strategies, bigger values of pSNO and pTA indicate better resiliency.
(The solid lines are mean values and the colored region indicates the spread
of quantities

Fig. 8 shows the result of the experiment and a comparison
of pSNO and pTA for different detection strategies. It is
seen that MLP2 has better resiliency than MLP1, even better
than MLP1 with pruning. This demonstrates the significant
improvement in resiliency by including the automated attack
generator in the training of MLP. In addition, the mean
of localization precision, calculated by (26), of four attack
detection strategies are shown in Fig. 9. As discussed in the
last subsection, although the pruning algorithm still improve
the localization precision of MLP2, the state estimation result
is not improved as much due to the loss of observability. This
indicates the MLP2 has already achieved the best balance
between the localization precision and the observability re-
quirement. However, it is noteworthy that MLP2 with pruning
has tighter spread of pSNO and pTA values than MLP2.
This indicates pruning algorithm can reduce performance
uncertainty.

Finally, one time-domain simulation result is presented in
Fig. 10. The attacks, generated by the trained generator in
Fig. 1, are injected through the channels T = {2, 8}1, and
four resilient estimation schemes are compared. It is seen that
the schemes using MLP2 and MLP2 with pruning reduce the
effectiveness of the critical measurements (smaller ∆y), and
also reduce the stealthiness of detection (bigger ∆r). Notice
that the peak value of ∆y at the beginning of injecting attacks

1The measurement channel used were not optimized or chosen using any
systematic way. The main objective of this simulation was not to demonstrate
how big of a difference MLP2 can make but to see what the time-domain
performance signals look like for one case of the stochastic experiment
presented in Fig. 8

Fig. 9. A comparison of the mean precision of different attack detection
strategies in the system simulation versus different number of attacks

happens for all four localization strategies, it is because of the
lack of enough measurement history for MLP.

Fig. 10. An example simulation results of the four different attack localization
strategies under 2 attacks at T = {2, 8}.

VIII. CONCLUSION

In this paper, we present an algorithm design for resilient
cyber-physical system, the resiliency is significantly improved
by including the proposed automated attack generation in the
training of attack detection algorithm. Unlike traditional GAN-
based FDI attack generation, the automated attack generator
does not require the prepared attack samples.
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