
Attack-Resilient Weighted `1 Observer with Prior Pruning

Yu Zheng1 and Olugbenga Moses Anubi1

Abstract— Security related questions for Cyber Physical
Systems (CPS) have attracted much research attention in
searching for novel methods for attack-resilient control and/or
estimation. Specifically, false data injection attacks (FDIAs)
have been shown to be capable of bypassing bad data de-
tection (BDD), while arbitrarily compromising the integrity of
state estimators and robust controller even with very sparse
measurements corruption. Moreover, based on the inherent
sparsity of pragmatic attack signals, `1-minimization scheme
has been used extensively to improve the design of attack-
resilient estimators. For this, the theoretical maximum for the
percentage of compromised nodes that can be accommodated
has been shown to be 50%. In order to guarantee correct state
recoveries for larger percentage of attacked nodes, researchers
have begun to incorporate prior information into the underlying
resilient observer design framework. For the most pragmatic
cases, this prior information is often obtained through some
data-driven machine learning process. Existing results have
shown strong positive correlation between the tolerated attack
percentages and the precision of the prior information. In this
paper, we present a pruning method to improve the precision
of the prior information, given corresponding stochastic un-
certainty characteristics of the underlying machine learning
model. Then a weighted `1-minimization is proposed based on
the pruned prior. The theoretical and simulation results show
that the pruning method significantly improves the observer
performance for much larger attack percentages, even when
moderately accurate machine learning model used.

NOTATION
The following notations and definitions are used through-

out the whole paper: R,Rn,Rn×m denote the space of real
numbers, real vectors of length n and real matrices of n
rows and m columns respectively. R+ denotes positive real
numbers. Normal-face lower-case letters (e.g. x ∈ R) are
used to represent real scalars, bold-face lower-case letter
(e.g. x ∈ Rn) represents vectors, while normal-face upper
case (e.g. X ∈Rn×m) represents matrices. Let T⊆{1, . . . ,n},
then for a matrix X ∈ Rm×n, XT ∈ R|T|×n is the sub-matrix
obtained by extracting the rows of X corresponding to the
indices in T. Tc denotes the complement of a set T and the
universal set on which it is defined will be clear from the
context. The support of a vector x is denoted by supp(x),
{i|xi 6= 0}. The set Sm

k ⊂ Rn denotes the set of all vectors
v ∈ Rm such that |supp(v)| ≤ k (i.e the subset of k-sparse
vectors). The best k-sparse approximation error for e ∈ Sm

k
is given by

σk(e), min
z∈Sn

k

‖e− z‖1 = ‖eTc‖1, (1)
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where T is the support of ei with first k largest magnitude.
The symbol ∗ denotes the convolution operator for vectors.
The symbol ◦ denotes element-wise multiplication of two
vectors and is defined as z = x ◦ y, where zi = xi · yi.
B(1,pi) denotes Bernoulli distributed variables with known
independent probability pi.

I. INTRODUCTION

Cyber-physical System has application potential in various
areas [1]. The authors in [2] pointed out that the ideal CPS
must operate dependably, safely, securely, efficiently and in
real-time.

Security questions in CPSs are more challenging than
traditional IT security because of the combination of tem-
poral dynamics brought by the physical environment and
the heterogeneous nature of the operation of CPSs [3].
Failure of CPS is more complicated than random failures
or well-defined uncertainty for which many results exist
on reliability and robustness, since they may be caused by
stealth malicious attacks. One of such powerful deception
attacks, named false data injection attack (FDIA), has shown
ability to bypass bad data detector (BDD), while compro-
mising the integrity of observer and robust controller with
sparse measurements corruption [4, 5]. Consequently, much
research attention have been directed to develop appropriate
protection schemes.

Active detection approaches have been considered [6],
where the defenders adjust the detection rules online in
order to identify the attack scenarios. There are some ma-
chine learning algorithms being considered to localize the
attacks, such as Gaussian process regression [7], support
vector machine[8], markov graphs[9], generative adversarial
networks[10] and more. These machine learning localization
algorithms generate estimated support of attacked (or safe)
nodes. This can then be used as a prior information for a
resilient estimation program.

Due to sparsity assumption of the attack vector
|supp(e)| ≤ k, the resilient estimation problem has been cast
as a classical error correction problem [5, 11]. Consider
a linear observation model y = Hx + e, where H ∈ RN×n

denotes an observation matrix, then the resilient estimation
is formulated as 0-norm minimization problem [12]. But it
imposes a restriction of maximum attack percentage of 50%
for correct recovery of x. Moreover, since 0-norm minimiza-
tion decoder is an NP-hard problem, an alternative 1-norm
minimization decoder has been considered in literature [7,
12], which can be solved by linear programming [13]. The
condition to bridge the two decoders is Restricted Isometry
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Property (RIP) [14] that defines the sparse recoverability of
observation matrix H.

In order to guarantee correct state recoveries for larger
percentage of attacks, prior information has been considered
for resilient estimation scheme in literature: Measurement
Prior [7, 15], Support Prior [5] and State Prior [16].
In [16], the author considered the Prior information of
estimated states in three forms: sparsity information of x0,
(α,n0) sparsity information where α replaces 0 in sparsity
definition, and side information that is knowledge of the
initial state from the physical attribution of the system and
cannot be manipulated by malicious third parties. In [7, 15],
the author constructed a data-driven auxiliary model between
system measurement and auxiliary state by trained Gaussian
Process Regression (GPR), the attacked measurements are
visible to defender if they cannot be explained based on
the measurement model prior with high likelihood. In this
paper, we consider support prior which gives an estimated
set of attack location, and is generated by any of the afore
mentioned localization algorithms. However, there are two
drawbacks, namely: uncertainty and training price. Thus, we
propose a Pruning method to improve the precision of the
support prior without training process. Then a weighted
1-norm minimization scheme [17] is given based on the
resulting pruned support prior. The pruning idea originates
from [5]. Moreover, due to the perfect localization precision
of pruned support prior, resilient Unscented Kalman Filter
(UKF) against FDIA was given in [18] by performing UKF
based on the pruned safe set.

The remainder of this paper is organized as follows. In
Section II, we describe the concurrent models that will be
used for the development in subsequent sections, including
physical model of CPS, threat model and prior model. In
Section III, we develop the pruning methods, and construct a
weighted `1 observer with pruned support prior. A numerical
simulation and an application simulation on IEEE-14 bus
system show the proposed observer indeed enhance the
system resilience in Section IV. Finally, conclusion remarks
follows in Section V.

II. MODEL DEVELOPMENT

This section discusses the relevant models that will facili-
tate the development in subsequent sections. Specifically, we
consider a physics-driven dynamical model for the physical
side, a data-driven threat model for the cyber side and the
prior information model.

A. Dynamical Model

Consider a linear model of CPS given by:

xi+1 = Axi

yi =Cxi + ei,
(2)

where, xi ∈Rn,yi ∈Rm, with m > n, denote state vector and
measurement vector at time i respectively, ei ∈ Sm

k denotes
the sparse attack vector, A,C are system dynamic parameters.
A control input may be included in the model above. How-
ever, since the control input is generally irrelevant to state

estimation problems, we suppress in the model considered
here. The following assumption is made regarding the CPS
model above:

Assumption 1: The pair (A,C) is full observable.
By iterating the system model (2) T time steps backwards,
the T horizon observation model is given by

yT = Hxi−T+1 + eT , (3)

where yT = [y>i y>i−1 · · ·y>i−T+1]
> ∈ RT m is a sequence of

observation in the moving window [i−T +1 i], xi−T+1 ∈Rn

is the state vector at time i−T +1, eT = [e>i e>i−1 · · ·e>i−T+1]
>

is the sequence of attack vectors in the same moving window
with ei ∈ Sm

k ,∀i ∈ [i−T +1 i] and

H =


CAT−1

...
CA
C

=U
[

Σ1
0

]
V>

where, U = [U1 U2], with U1 ∈ RT m×n,U2 ∈ RT m×T m−n, is
a matrix of left singular vectors of H, V ∈ Rn×n is the
corresponding matrix of right singular vectors, and Σ1 ∈Rn×n

is a diagonal matrix of the singular values of H, which are
non-zero since H is full rank.

B. Threat Model

We begin by defining a state decoder operation and a
corresponding residual-based attack detector. Then we give
a class of FDIA with guaranteed success against the defined
decoder-detector pair. The following assumption is made
concerning the attack vector:

Assumption 2: The attacker has knowledge of the system
dynamics in (2).

Definition 1 (Decoder): Given a sequence of observation
yT ∈ RT m, a decoder for the measurement model in (3) is a
mapping of the form D : RT m 7→ Rn given by

x̂ =D(yT ) =V Σ
−1
1 argmin

z
‖yT −U1z‖1 (4)

Definition 2 (Detector): Given a positive threshold pa-
rameter ε , a detector for the decoder D and the measurement
model in (3) is a binary classifier of the form

Dε(yT ) =

{
1 if ‖yT −HD(yT )‖1 > ε

0 otherwise (5)

Remark 1: The positive class for Dε(·) is regarded as
the set of attacked (unsafe) measurements, while the negative
class is regarded as the set of safe measurements. However,
the negative class still contains unsafe measurements if the
detector is compromised.

Definition 3 (Successful FDIA [4]): Consider the CPS
in (2) and the corresponding measurement model (3), the
attack sequence eT ∈ ST m

km is said to be (ε,α)-successful
against the decoder-detector pair {D,Dε} if

‖x?−D(yT )‖2 ≥ α, Dε(yT ) = 0, (6)

where yT = y?T + eT with y∗T ∈ RN the true measurement
vector, and x? is the true state vector.
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The following theorem gives a mechanism for constructing
such (ε,α)-successful FDIA if the attack support is pre-
determined.

Theorem 2.1: Given the support sequence
T = {Ti Ti−1 · · ·Ti−T+1} with |Ti| ≤ k. Let ze be an
optimal solution of the optimization program

Maxmize : ‖U1z‖2,

Subject to : ‖U1,Tcz‖2 ≤
ε√

T m−|T|
.

(7)

If ‖U1,Tc‖2 <
1

2
√

T m−|T|
, then the FDIA

eT = (U1,T)ze, eTc = 0 (8)

is (ε,α)-successful against the decoder-detector pair
{D,Dε} for all

α ≤ ε

2
√

T mσ

(
1

σTc
√

T m−|T|
−2

)
,

where σTc is the largest singular value of U1,Tc and σ is the
biggest nonzero singular value of H.

Proof: Since{
z

∣∣∣∣∣ ‖z‖2 ≤
ε

σTc
√

T m−|T|
, a

}
⊂{

z

∣∣∣∣∣ ‖U1,Tc z‖2 ≤
ε√

T m−|T|

}
,

then
‖U1ze‖2 ≥ max

‖z‖2≤a
‖z‖2 ≥

ε

σTc
√

T m−|T|
.

Also
yT = y?T +P

[
U1,T

0

]
ze,

with an appropriate permutation matrix P satisfying U1 =

P
[

U1,T
U1,Tc

]
. Hence, by decoder in (4),

x̂ =V Σ
−1
1 argmin

z

∥∥∥∥U1(z?− z)+P
[
U1,T

0

]
ze

∥∥∥∥
1

=V Σ
−1
1 (z?− z⊥e ),

(9)

where z? = Σ1V>x? corresponds to the true state and z⊥e is
the projection given by

z⊥e = argmin
z

∥∥∥∥U1z+P
[
U1,T

0

]
ze

∥∥∥∥
1
.

Then1,∥∥∥∥U1z⊥e +P
[
U1,T

0

]
ze

∥∥∥∥
1
≤
∥∥∥∥U1z⊥e −P

[
0

U1,Tc

]
ze

∥∥∥∥
1∥∥U1,Tze

∥∥
1−‖U1z⊥e ‖1 ≤ ‖U1z⊥e ‖1 +

∥∥U1,Tc ze
∥∥

1

2‖U1z⊥e ‖2 ≥
∥∥U1,Tze

∥∥
1−
∥∥U1,Tcze

∥∥
1

1Let f (z)=
∥∥∥∥U1z−P

[
0

U1,Tc

]
ze

∥∥∥∥
1

which is a convex function.The unique

minimizer z⊥e satisfies f (z⊥e )≤ f (z⊥e − ze).

Thus,

‖U1z⊥e ‖2 ≥
1
2

(
‖U1ze‖2−2

√
T m−|T|

∥∥U1,Tcze
∥∥

2

)
≥ 1

2

(
ε

σTc
√

T m−|T|
−2ε

)
Next, according to the solution in (9), it follows

x?− x̂ =V Σ
−1
1 z⊥e

H(x?− x̂) =U1z⊥e

σ‖x?− x̂‖2 ≥
1√
T m
‖U1z⊥e ‖1

‖x?− x̂‖2 ≥
1

2σ
√

T m

(
ε

σTc
√

T m−|T|
−2ε

)

Since ‖U1,Tc‖2 < 1
2
√

T m−|T|
, the lower bound in the above

inequality is positive. Moreover,

‖yT −Hx̂‖1 =

∥∥∥∥U1z?+P
[
U1,T

0

]
ze−Hx̂

∥∥∥∥
1

=

∥∥∥∥U1z?+P
[
U1,T

0

]
ze−U1(z?− z⊥e )

∥∥∥∥
1

=

∥∥∥∥U1z⊥e +P
[
U1,T

0

]
ze

∥∥∥∥
1

≤
√

T m−|T|
∥∥U1,Tcze

∥∥
2 ≤ ε

C. Prior Model

The prior information considered in this paper is an
uncertain estimate of the support of the attack vector. There
are many Machine Learning algorithms for estimating the
location of attacks in a CPS [8, 10]. We will refer to such
algorithm as localization algorithm (or localization oracle),
and the resulting support estimate as support prior.

Let T ⊆ {1,2, . . . ,T m} be the actual support of the at-
tacked nodes with the vector q ∈ {0, 1}T m the correspond-
ing indicator

qi =

{
0 if i ∈ T

1 otherwise (10)

Let T̂, be an estimate of T, with the corresponding
indicator q̂ ∈ {0,1}T m defined similarly to (10). Then an
uncertainty model is defined as

qi = εiq̂i +(1− εi)(1− q̂i) (11)

where εi ∼B(1,pi), with known pi ∈ (0,1].
Definition 4 (Positive Prediction Value, Precision, PPV):

Given the indicator vector estimate q̂ ∈ {0,1}T m of the
unknown attack support indicator q ∈ {0,1}T m, PPV is the
proportion of q that is correctly identified in q̂. It is given
by

PPV =
‖q◦ q̂‖0

‖q̂‖0
(12)
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III. RESILIENT OBSERVER DESIGN

In this section, the pruning method is developed based
on any uncertain estimate of support prior from underlying
machine learning localization algorithm, then the generated
pruned support prior with precision guarantee is included in
a weighted 1-norm minimization scheme.

A. Prior Pruning

Based on the knowledge of uncertainty of prior, a pruned
support prior T̂c

η is generated in two steps; first, an estimated
safe nodes support vector is returned by the below offline
optimization program, given a reliability level η ∈ (0,1),

Maximize |Î|
Subject to ∏

i∈Î
pi ≥ η

I ∈ {1,2, . . . ,T m} .

(13)

Then a pruned support prior is obtained online through a
robust extraction:

T̂c
η = I∩ T̂c. (14)

Lemma 3.1: Given a support prior T̂ generated by any
underlying localization algorithm with associated uncertainty
model in (11), if a pruned support prior T̂c

η is generated by
(14), then it satisfies

Pr{PPVη = 1} ≥ η , (15)

where PPVη is the precision of T̂c
η defined by (12).

Proof: From (11), it follows qiq̂i = εiq̂i, which implies

PPV =
‖q◦ q̂‖0

‖q̂‖0
=

∑
N
i=1 qiq̂i

∑
N
i=1 q̂i

=
1
|T̂c|

N

∑
i=1

εiq̂i =
1
|T̂c| ∑

i∈T̂c

εi

Similarly,

PPVη =
1
|T̂c

η |
∑

i∈T̂c
η

εi.

Then, since T̂c
η ⊆ I and 0 < pi ≤ 1,

Pr{PPVη = 1}= Pr

 ∑
i∈T̂c

η

εi = |T̂c
η |

= ∏
i∈T̂c

η

pi ≥ η

B. Weighted `1 Observer

Consider the CPS in (2). Given a pruned support prior T̂c
η

in (14), the weighted `1 observer is given by the following
moving horizon estimation problem:

Minimize
i

∑
p=i−T+1

‖yp−Czp‖1,w

Subject to zp+1−Azp = 0,
p = i−T +1, · · · , i−1

w =

{
1, j ∈ T̂c

η

ω, j ∈ T̂η

(16)

where, 0≤ω ≤ 1, ‖z‖1,w ,∑ j w j|z j| is the weighted 1-norm.

Remark 2: Consider the corresponding measurement
model (3), then an equivalent form of (16) is given by

Minimize
z∈Rn

‖yT −Hz‖1,w, with w =

{
1, j ∈ T̂c

η

ω, j ∈ T̂η

(17)

Theorem 3.2: Consider the CPS measurement model in
(3), such that U>2 satisfies the RIP condition

(1−δkm)‖h‖2
2 ≤ ‖U>2 h‖2

2 ≤ (1+δkm)‖h‖2
2 (18)

for all sparse vector h∈ ST m
km . Given a support prior T̂c gener-

ated by an underlying localization algorithm with associated
uncertainty model in (11). Let T̂c

η be the pruned support
prior given by (14) with a parameter η ∈ (0,1). If there
exists an integer a ≥ max{ρ−1,1}, where ρ =

|T̂η |
km , such

that
δakm +Cδ(a+1)km ≤C−1 (19)

then, with a probability of at least η , the estimation error
due to the resilient observer in (17) can be upper bounded
as

‖x̂−x∗‖2 ≤
C1

σ
√

km

(
ωσkm(e)+(1−ω)‖eT̂c

η
‖1

)
, (20)

where σ is the smallest singular value of H, and

C1 =
2a−

1
2 (
√

1−δ(a+1)km +
√

1+δakm)√
1−δ(a+1)km− 1

C

√
1+δakm

,

C =
a

(ω +(1−ω)
√

ρ−1)2 .

Proof: To avoid repetition, we state upfront that all
claims made in this rest of proof holds with a probability of
at least η . Based on Lemma 3.1, we have T̂c

η ⊂ Tc, T ⊂ T̂η

under this probability.
Let x̂ be a solution to (17) with Hx̂ = Hx∗−h, then the

corresponding minimizer ê = e + h, thus ‖ê‖1,ω ≤ ‖e‖1,ω .
Following the definition of weight w in (17),

ω‖eT̂η
+hT̂η

‖1 +‖eT̂c
η
+hT̂c

η
‖1 ≤ ω‖eT̂η

‖1 +‖eT̂c
η
‖1

Since 1-norm is decomposable for disjoint sets, such for T

and Tc, and T̂c
η ∩T = /0, T̂c

η ∩Tc = T̂c
η , T∩ T̂η = T, it follows

ω‖eT +hT‖1 +ω‖eT̂η∩Tc +hT̂η∩Tc‖1 +‖eT̂c
η
+hT̂c

η
‖1

≤ ω‖eT‖1 +ω‖eT̂η∩Tc‖1 +‖eT̂c
η
‖1

By triangle inequality, it follows

ω‖hT̂η∩Tc‖1+‖hT̂c
η
‖1≤ω‖hT‖1+2

(
‖eT̂c

η
‖1 +ω‖eT̂η∩Tc‖1

)
Adding and subtracting ω‖hT̂c

η∩Tc‖1(= ω‖hT̂c
η
‖1) on LHS,

2ω‖eT̂c
η∩Tc‖1(= 2ω‖eT̂c

η
‖1) on RHS, it yields

ω‖hTc‖1 +(1−ω)‖hT̂c
η
‖1 ≤ ω‖hT‖1 +β

where, β = 2
(

ω‖eTc‖1 +(1−ω)‖eT̂c
η
‖1

)
. And since

‖hTc‖1 = ω‖hTc‖1 +(1−ω)‖hT̂c
η
‖1 +(1−ω)‖hT̂η∩Tc‖1, it

yields

‖hTc‖1 ≤ ω‖hT‖1 +(1−ω)‖hT̂η∩Tc‖1 +β (21)
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Next, sort the coefficients of hTc in descending order, and
let T j, j ∈ {1,2, · · ·} denote jth support in hTc with size
akm ∈ Z, where a > 1. Then ‖hT j‖2 ≤ (akm)−1/2‖hT j‖∞ ≤
(akm)−1/2‖hT j−1‖1, let T0 = T∪T1, we have

‖hTc
0
‖2 ≤ ∑

j≥2
‖hT j‖2

≤ (akm)−1/2
∑
j≥1
‖hT j‖1

≤ (akm)−1/2‖hTc‖1

(22)

Note that |T̂η ∩Tc|= (ρ−1)km since PPVη = 1, and |T|=
km, then ‖hT̂η∩Tc‖1 ≤

√
(ρ−1)km‖hT̂η∩Tc‖2 , ‖hT‖1 ≤√

km‖hT‖2 ≤
√

km‖hT0‖2. Since a ≥ ρ − 1, we obtain
|T̂η ∩ Tc| = (ρ − 1)km ≤ akm = |T1|, then ‖hT̂η∩Tc‖2 =

‖hT∪(T̂η∩Tc)‖2 ≤ ‖hT0‖2. Then combine with (21) and (22),

‖hTc
0
‖2 ≤

ω +(1−ω)
√

ρ−1√
a

‖hT0‖2 +
β√
akm

(23)

Since ‖U>2 h‖2 = ‖(U>2 e?−U>2 yT )−(U>2 e−U>2 yT )‖2 = 0,
it follows, based on triangle inequality and RIP condition,√

1−δ(a+1)km‖hT0‖2 ≤ ‖U>2 hT0‖2 ≤ ‖U>2 hTc
0
‖2,

and

‖U>2 hTc
0
‖2 ≤ ∑

j≥2
‖U>2 hT j‖2 ≤

√
1+δakm ∑

j≥2
‖hT j‖2

≤
√

1+δakm√
akm

∑
j≥1
‖hT j‖1 =

√
1+δakm√

akm
‖hTc‖1,

then combining with (21) yields√
1−δ(a+1)km‖hT0‖2 ≤ ω

√
1+δakm√

akm
‖hT‖1+

(1−ω)

√
1+δakm√

akm
‖hT̂η∩Tc‖1 +

√
1+δakm√

akm
β .

Notice, we have ‖hT‖1 ≤
√

km‖hT0‖2 and ‖hT̂η∩Tc‖1 ≤√
(ρ−1)km‖hT0‖2, then manipulating the above inequality

yields

‖hT0‖2 ≤

√
1+δakm√

akm
β√

1−δ(a+1)km−
ω+(1−ω)

√
ρ−1√

a

√
1+δakm

Since ‖h‖2 ≤ ‖hT0‖2 + ‖hTc
0
‖2, combining the above in-

equality with (23) yields

‖h‖2 ≤
2
√

1−δ(a+1)km+
√

1+δakm√
akm

(
ω‖eTc‖1 +(1−ω)‖eT̂c

η
‖1

)
√

1−δ(a+1)km−
ω+(1−ω)

√
ρ−1√

a

√
1+δakm

where ‖eTc‖1 = σkm(e) is best k sparse approximation error
of e defined in (1), and the estimation error ‖x̂− x∗‖2 ≤
σ−1‖h‖2. Moreover, in order to ensure that the denominator
is positive, the following condition is imposed:

δakm +Cδ(a+1)km <C−1,

where C = a
(ω+(1−ω)

√
ρ−1)2 .

IV. NUMERICAL SIMULATION
In this section, a numerical simulation2 and an application

simulation on IEEE-14 bus system are presented.

A. Numerical Simulation
In this simulation, we compare the resiliency of three

estimation scheme: `1 observer without prior, weighted `1
observer with prior generated an underlying attack localiza-
tion algorithm with a true rate of Tr = 0.6, and weighted
`1 observer with the pruned prior. The system dimension is
set as m = 20,n = 10, and then a full observable system is
generated with random pair (A,C) of independent Gaussian
entries [13]. For different attack percentage PA, the FDIA is
designed by (8) on random support T. By defining ”success”
as that the estimation error is less than 0.1% of the real
state, the success percentage is calculated from 1000 trials. In
Figure 1, a performance comparison is presented for varying
attack percentages. As proved in literature [12], `1 observer
without prior cannot work when attack percentage is larger
than 1/2. The prior information can improve the resiliency
of the estimator, but the improvement is limited because the
precision of the prior information is not enough. By including
pruning method, the resiliency is improved a lot.

Fig. 1. A comparison of estimation performance under different attack
percentage PA ∈ [0,1] between `1 Observer without Prior, Weighted `1
Observer with Prior, and Weighted `1 Observer with Prior Pruning.

B. Application Example
In this subsection, an additional simulation is carried out

for a more realistic IEEE Bus 14 system with a similar setup
in [15]. Here, 30% of the measurement nodes are attacked.
A comparison of the resulting phase angles estimation for
an `1 observer without prior and the proposed weighted `1
observer with prior pruning is shown in Figure 2. Moreover,
two comparison metrics for the estimation errors are given in
Table I. The first one is the root-mean-square (RMS) value
of error, the second one is the maximum absolute value of
the errors. Since the attack percentage is small, `1 observer
without prior works well. However, there are still notable
spikes that may induce closed loop instability. As shown in
the Figure, the proposed weighted `1 observer with prior
pruning completely eliminates the spikes!

2we make the numerical simulation be open source at https://
github.com/ZYblend/Resilient-Pruning-Observer
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TABLE I
ERROR METRIC VALUES

RMS Metric Max. Ans. Metric
LO L1O WL1P LO L1O WL1P

δ1 2.5359 0.0002 0.00004 5.7480 0.0034 0.0005
δ2 2.3917 0.0002 0.0001 5.7000 0.0016 0.0016
δ3 2.6353 0.0012 0.0001 7.5232 0.0215 0.0013
δ4 2.3685 0.0006 0.0005 5.7236 0.0063 0.0052
δ5 2.6638 0.0007 0.0001 7.8757 0.0085 0.0016

LO: Luenberger observer, L1O: `1 observer without prior
WL1P: Weighted `1 observer with prior pruning

Fig. 2. Angle estimation for IEEE-14 bus system under FDIA, ”without
Prior” means `1 Observer without Prior, ”Prior with Pruning” means
Weighted `1 Observer with Prior Pruning.

V. CONCLUSION

This paper proposed a weighted `1 observer with prior
pruning scheme against FDIAs. The pruning method gives a
method to improve localization precision of any underlying
localization algorithm without training effort. Moreover, the
weighted `1 observer with prior pruning is capable of coping
with high-percentage of attacks among measurement nodes,
which relaxes the transitional restriction on the maximum
attack percentage for resilient `1 observer, thereby improve
the resiliency of systems.
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