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Concurrent Learning Adaptive Model

Predictive Control with Pseudospectral

Implementation

Olugbenga Moses Anubi

Abstract

This paper presents a control architecture in which a direct adaptive control tech-
nique is used within the model predictive control framework, using the concurrent
learning based approach, to compensate for model uncertainties. At each time step,
the control sequences and the parameter estimates are both used as the optimization
arguments, thereby undermining the need for switching between the learning phase
and the control phase, as is the case with hybrid-direct-indirect control architectures.
The state derivatives are approximated using pseudospectral methods, which are vastly
used for numerical optimal control problems. Theoretical results and numerical simu-
lation examples are used to establish the effectiveness of the architecture.

1 Introduction

Model predictive control (MPC) refers to a class of control systems in which the current
control action is obtained at each sampling instant by solving a finite(or infinite) horizon
open-loop optimal control problem, using the current state of the system as the initial
condition. While the result of the optimization is a sequence of control actions over the
prediction horizon, only the first control action is applied at the current time; the process
is repeated at the next time instant. Using this framework, it is easy and straightforward
to cope with hard constraints on controls and states. As a result, MPC has received a
lot of attention in the literature for both discrete and continuous time systems [10, 8,
25, 29, 5, 31, 30, 15, 6]. However, due to the dependence on dynamic predictive model,
unaccounted modeling errors and dynamic uncertainties may render such model obsolete
or inaccurate. In which case, the performance of the MPC can no longer be guaranteed.
To overcome this challenge, a number of researchers have proposed some indirect-adaptive
MPC approaches which allows for a way to incorporate learning in the MPC framework
[1, 2, 4, 20]. Using these approaches, the system parameters are estimated online and
open-loop optimal controllers are generated at each time step. One major challenge of this
approach, however, is that it is difficult to guarantee stability, especially during parameter
estimation transient phases [28].

On the other hand, Direct adaptive control techniques modulate the system input to
compensate for modeling uncertainties. Direct adaptive control can guarantee stability,
even during harsh transients, however, they do not offer any long-term improvement due
to model learning unless the system states are persistently exciting1. Furthermore, it is
difficult to generate optimal solutions in the presence of input and state constraints with
direct adaptive architectures [12].

1A bounded vector signal Φ(t) is persistently exciting if for all t > t0 there exists T > 0 and γ > 0 such

that
∫
t+T

t
Φ(τ)Φ(τ)T dτ ≥ γI.
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In [12], a Concurrent Learning based approach was proposed to address the above chal-
lenges. Concurrent learning (CL) [11, 14] uses recorded and current data concurrently to
learn the parametric uncertainties in a dynamic system. Although it was first introduced
for adaptation in the framework of Model Reference Adaptive Control (MRAC) [11], it
can, as a result of the form of it’s update law, be easily extended to the general framework
of adaptive control with linear-in-the-parameter (LP) structure. It was shown[11] that
provided that the recorded data satisfies certain rank condition, then the adaptive weight
convergence can occur without the system states being persistently exciting.

In this paper, a direct adaptive technique is used within the MPC framework, in con-
junction with the Concurrent Learning based approach, to compensate for model uncer-
tainties. At each time step, the control sequences and the parameter estimates are both
used as the optimization arguments, thereby undermining the need for switching be-
tween the learning phase and the control phase, as is the case with hybrid-direct-indirect
control architectures [16, 27] employed in [12]. Moreover, the state derivatives are approx-
imated at the recorded data points and over the prediction horizon using pseudospectral
method. Pseudospectral methods are vastly used in the numerical solution of optimal
control problems [17, 18, 3, 32, 22]. They belong to a class of direct collocation methods
where the optimal control problem is transcribed to a nonlinear programming problem
(NLP) by parameterizing the state and control using global polynomials, and collocating
the differential-algebraic equations using nodes obtained from a Gaussian quadrature.
With this approach, it is easier to formulate the problem without requiring that the
system dynamics be linearly parameterizable.

The rest of the paper is organized as follows: In Section 2, the notations used throughout
the paper are introduced. In Section 3, the CL problem is reformulated as an optimiza-
tion problem to facilitate its inclusion into MPC framework. In Section 4, the problem
setup for the concurrent learning model predictive control is given. In Section 5, the
pseudospectral implementation is presented. Numerical examples are given in Section 6.
Conclusion follows in Section 7.

2 Notation

Throughout the paper, the following notations are used: R and R+ denotes the set of
real numbers and positive real numbers respectively. All vectors and vector functions
are treated as row vectors; that is, x(τ) = [x1(τ), . . . , xn(τ)] ∈ R

n, where n is the
continuous time dimension of x(τ). The Euclidean norm of a vector x ∈ R

n is denoted by

‖x‖ ,
(
xTx

)1/2
. The quadratic form ‖x‖2P , xTPx is defined for any symmetric positive

semi-definite matrix P . The expression P � Q means that the matrix P −Q is negative
semi-definite. The transpose of a matrix B is denoted by BT . The ith row of a matrix D

is denoted by Di . The gradient of a scalar valued function f(X) is a row vector denoted
by ∇f(X). The matrix fθ(. . . , θH , . . . ) ∈ R

p×n denotes the partial derivative of a vector
valued function f(. . . , θ, . . .) : . . .× R

p × . . . 7→ R
n with respect to the argument θ ∈ R

p,
evaluated at θ = θH . The L2 norm of a vector-valued signal x : R+ 7→ R

n is given by

‖x‖2 =

(∫ ∞

0

‖x(τ)‖2 dτ
)1/2

Hα
n denotes the n-vector valued Sobolev space over the interval [−1, 1], with α denoting

the number of classical derivatives of its elements. Hα is given with respect to the L2

norm as,

‖x‖(α) =
(

α∑

k=0

∥∥∥x(k)
∥∥∥
2

2

)1/2

.
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The space of all bounded functions is denoted by L∞.

3 Concurrent Learning

In this section, the original CL problem is reformulated as an optimization problem.
This facilitates a direct inclusion into the MPC framework, as will be shown in the next
section. The class of system considered is described by the following set of nonlinear
ordinary differential equations:

ẋ(t) = f(x(t),u(t), θ), x(0) = x0, (1)

where x(t) ∈ R
n is the vector of state variables, u(t) ∈ R

m is a vector of inputs, and
θ ∈ Θ ⊂ R

p is a vector of unknown constant parameters. The following assumptions are
made for the system described in (1)(see [10] also for a similar set of assumptions):

(A1). f : Rn×R
m×R

p → R
n is twice continuously differentiable and f(0,0, θ) = 0, ∀θ ∈

Θ. That is, 0 ∈ R
n is an equilibrium of the system with u = 0.

(A2). u(t) ∈ U , where U ⊂ Rm is compact, convex, and 0 ∈ R
m is contained in the interior

of U .

(A3). The system in (1) has a unique solution for any initial condition x0 ∈ R
n and any

piecewise continuous and right continuous u(.) : [0,∞) → U , for all θ ∈ Θ.

Let

Ω(uH(.)) = {xH : ẋH − f(xH ,uH , θ) = 0} (2)

be a set of recorded data generated by the system in (1) from a given open-loop input
sequence uH(τH), τH ∈ [0, T ], and unknown constant parameter θ.

The following definition of persistence of excitation is adopted for the subsequent de-
velopment in this paper.

Definition 1 (Persistence of Excitation (PE)). The system in (1) is said to be persistently
exciting with respect to the open loop input sequence u(t), if there exists λ1, λ2 > 0 such
that

λ1I �
∫ T

0

fθ(xH ,uH(τH), θH)fθ(xH ,uH(τ), θH)T dτ � λ2I, (3)

for all θH ∈ Θ.

Let θ̂ be an estimate of the unknown parameter θ, the performance index

ǫ(θ̂(t)) =

∫ T

0

∥∥∥ẋH(τH)− f(xH(τH),uH(τH), θ̂(t))
∥∥∥
2

dτH . (4)

is defined to characterize the “goodness”2 of the parameter estimate θ̂. Next, the rela-
tionship between ǫ(θ̂) and the parameter estimation error is exploited.

2This term is used to describe how close the response, generated using the estimate, is to the actual
recorded data
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Theorem 1. Suppose the system in (1) is persistently exciting with respect to the open-
loop input sequence uH(t), then for all ε > 0, there exists δ > 0, satisfying δ → 0 as ε → 0,

such that
∥∥∥θ − θ̂

∥∥∥ ≤ δ whenever ǫ(θ̂) ≤ ε.

Proof. After using (2), the equation in (4) can be written as

ǫ(θ̂) =

∫ T

0

∥∥∥f(xH ,uH(τ), θ)− f(xH ,uH(τ), θ̂)
∥∥∥
2

dτ . (5)

It is clear to see, using the Mean Value Theorem, that

f(xH ,uH(τ), θ)− f(xH ,uH(τ), θ̂) =
(
θ − θ̂

)
fθ(xH ,uH(τ), θH), (6)

where

θH = αθ + (1− α)θ̂, α ∈ [0, 1].

Thus, the equation in (5) becomes

ǫ(θ̂) =
(
θ − θ̂

)(∫ T

0

fθ(xH ,uH(τ), θH)fθ(xH ,uH(τ), θH)T dτ

)(
θ − θ̂

)T
. (7)

Now, using (3) , it follows that

λ1

∥∥∥θ − θ̂

∥∥∥
2

≤ ǫ(θ̂). (8)

Thus, the conclusion follows by setting

δ =

√
ε

λ1
.

Remark 1. The model error given by the performance index in (4) requires the computa-
tion of the state derivatives. This can be computed accurately using numerical smooth-
ing techniques [14, 13]. However, as will be shown in subsequent sections, the need to
compute state derivatives is abated by transforming the problem using pseudospectral
approximation.

Remark 2. Theorem 1 shows that the smaller the value of the performance index in (4),
the smaller the 2-norm of the parameter estimation error. Thus, the parameter estimation
error can be reduced as much as possible by setting

θ̂ = argmin
θ′

ǫ(θ′).

4 Concurrent Learning Adaptive Model Predictive Control

Scheme

In this section, the problem setup for the concurrent learning adaptive model predictive
control is given. Following each measurement, an open-loop optimal control is solved.
The objective function to minimize comprises of the performance index given in (4), and
an additional cost functional which penalizes the state and control in accordance with
standard MPC setup. Moreover, the arguments of the optimization is the pair (u(.), θ̄).

4



In other words, at each time step, the values of the open-loop control sequence u(.) and
a constant parameter estimate θ̄ that minimizes the combined cost functional is found.
In particular, the open-loop optimal control problem at time t, with initial state x(t), is
formulated as

min
(ū(.),θ̄)

J(x(t), ū(.), θ̄), (9)

where

J(x(t), ū(.), θ̄) =

∫ ∞

t

(
‖x̄(τ,x(t))‖2Q + ‖ū(τ)‖2R

)
dτ + γǫ(θ̄), (10)

subject to

˙̄x = f(x̄, ū, θ̄), x̄(t,x(t)) = x(t) (11a)

¯u(τ) ∈ U , τ ∈ [t, ∞), (11b)

where γ > 0, and Q ∈ R
n×n and R ∈ R

m×m are positive definite symmetric weighting
matrices; x̄(τ,x(t)) is the state trajectory of the system in (11a), starting from the initial
state x(t), and driven by the open-loop control sequence u(τ), τ ∈ [t, ∞). Without loss
of generality, an infinite-horizon nonlinear model predictive control problem is considered.
For a finite-horizon3 case, the problem can be setup to include an additional quadratic
terminal cost chosen to ensure that a closed-loop asymptotic stability is guaranteed.

According to the receding horizon philosophy, the resulting open-loop optimal control
profile is applied to the system only until the next measurement becomes available. Let
Ts be the measurement sampling time, and (ū∗(τ,x(t)), θ̄

∗
(x(t)) the optimal solution to

the optimization problem (9)–(11b), then the closed-loop control and parameter estimate
are given by

u(τ) = ū∗(τ,x(t)), τ ∈ [t, t+ Ts] (12)

θ̂(τ) = θ̄
∗
(x(t))

+ k−1
θ

∫ τ

t

∫ T

0

(
ẋH − f(xH ,uH(τH), θ̂(t))

)
Γ(τH)T dτHdσ, (13)

within the time interval τ ∈ (t, t+Ts). θ̂ = θ̄
∗
(x(τ)) for τ ∈ {0, Ts, 2Ts, . . .}. Moreover,

Γ : R+ → R
n×p is chosen to satisfy

λ1I �
∫ T

0

fθ(xH ,uH(τH), θH)Γ(τH)TdτH � λ2I, (14)

for all θH ∈ Θ, and kθ is a positive constant, with k−1
θ being the concurrent learning gain.

It should be noted that the optimal parameter θ̄
∗
is merely a decision variable internal to

the optimization problem in (9)–(11b). The update law in (13) is given as a by product
of the proposed method. The asymptotic convergence to the true parameter, using the
given update law, is shown subsequently. Knowledge of the true parameter in the system
can be used for several purposes as desired by the user. For instance, diagnostic purposes,
as a means to switch between controllers, etc. Once new measurements become available
(after Ts time units), the optimization problem in (9)–(11b) is solved again to find new

3Interested readers are directed to references [10, 8, 25, 29].
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input profiles, the closed-loop control and parameter estimate in (12) and (13) are then
applied within the time interval τ ∈ [t + Ts, t + 2Ts], and so on. Note that, while the
parameter estimate at time t is a function of the state measurement x(t), it is treated as
a constant throughout the prediction window in the optimization problem in (9)–(11b).
This applies also to all other measurement points t + kTs, k = 1, 2, . . .. Consequently,
the closed-loop system is described by the ordinary differential equation

ẋ(t) = f(x(t),u(t), θ̂(t)). (15)

Next, in the following subsection, the stability properties of the closed-loop system is
considered.

4.1 Stability Analysis

The following standard definitions, adapted from [26], describe the notion of stability as
used in this paper.

Definition 2 (Stability). The equilibrium point x = 0 of the system in (1) is stable if
for each ε > 0 there exists η(ε) > 0, such that ‖x(0)‖ < η(ε) implies that ‖x(t)‖ < ε for
all t ≥ 0.

Definition 3 (Asymptotic Stability). The equilibrium point x = 0 of the system in (1)
is asymptotically stable if it is stable and η can be chosen such that ‖x(0)‖ < η implies
that x(t) → 0 as t → 0.

Next, in order to facilitate subsequent stability analysis, an important property of the
optimal value function is examined. For simplicity of exposition, except required for
clarity, the shorthands

J(x(t)) , J(x(t), ū, x̄, θ̄)

J∗(x(t)) , J(x(t), ū∗, x̄∗, θ̄
∗
)

are used.

Lemma 1. Suppose the system in (1) is persistently exciting with respect to the open-loop
input sequence uH(t). If the kθ in (13) is chosen to satisfy the sufficient condition

kθ ≥ Tsλ3

λ4
, (16)

where

λ3 = max
{
λ3
1, λ

2
1λ2, λ1λ

2
2, λ

3
2

}
, λ4 = min

{
λ2
1, λ1λ2, λ

2
2

}

[λ1 and λ2 are given in (3) and (14)]

then the optimal value function J(x(t),u(τ), θ̂(τ)) , J∗(x(t)) satisfies

J∗(x(s)) ≤ J∗(x(t))−
∫ s

t

(
‖x(τ)‖2Q + ‖u∗(τ)‖2R + 2β

∥∥∥θ̃(τ)
∥∥∥
2
)
dτ , (17)

for all s ∈ (t, t+ Ts], where

β =
γkθλ4

2 (Tsλ2 + kθ)
2 , (18)

and θ̃(τ) , θ − θ̂(τ) is the parameter estimation error.
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Proof. At time t, the optimal value function, using the closed-loop control in (12) and
parameter estimate in (13), is given by

J∗(x(t)) =

∫ ∞

t

(
‖x̄∗(τ,x(t))‖2Q + ‖u(τ)‖2R

)
dτ + γǫ(θ̂(t)). (19)

Now, for all s ∈ (t, t+ Ts], the value of the objective cost functional in (4) is given as:

J(x(s)) =

∫ ∞

s

(
‖x̄∗(τ,x(t))‖2Q + ‖u(τ)‖2R

)
dτ + γǫ(θ̂(s)), (20)

=

∫ ∞

t

(
‖x̄∗(τ,x(t))‖2Q + ‖u(τ)‖2R

)
dτ + γǫ(θ̂(s))

−
∫ s

t

(
‖x̄∗(τ,x(t))‖2Q + ‖u(τ)‖2R

)
dτ (21)

= J∗(x(t)) −
∫ s

t

(
‖x̄∗(τ,x(t))‖2Q + ‖u(τ)‖2R

)
dτ

+ γ
(
ǫ(θ̂(s))− ǫ(θ̂(t))

)
. (22)

For the sake of clarity, let

Φ =

∫ T

0

fθ(xH ,uH(τH), θH)fθ(xH ,uH(τH), θH)T dτH

Ψ =

∫ T

0

fθ(xH ,uH(τH), θH)Γ(τH)T dτH .

Thus

ǫ(θ̂(τ)) = θ̃(τ)Φθ̃(τ)T , (23)

which implies that

ǫ(θ̂(s))− ǫ(θ̂(t)) =
(
θ̃(s)− θ̃(t)

)
Φ
(
θ̃(s)− θ̃(t)

)T

+ 2θ̃(t)Φ
(
θ̃(s)− θ̃(t)

)T
. (24)

From (13), we have that

θ̃(s)− θ̃(t) = k−1
θ

∫ s

t

∫ T

0

(
ẋH − f(xH ,uH(τH), θ̂(t))

)
Γ(τH)T dτHdσ,

which, after using the Mean Value Theorem, and following similar argument in (5) and
(7) yields

θ̃(s)− θ̃(t) = −k−1
θ

∫ s

t

θ̃(t)Ψdτ2 = −(s− t)k−1
θ θ̃(t)Ψ. (25)

Now, by using the properties in (3) and (14), it is clear that

λ1I � Φ � λ2I
λ1I � Ψ � λ2I

}
⇒





θ̃(t)ΨΦΨT
θ̃(t)T ≤ λ3

∥∥∥θ̃(t)
∥∥∥
2

λ4

∥∥∥θ̃(t)
∥∥∥
2

≤ θ̃(t)ΦΨT
θ̃(t)T

.
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Thus, (24) becomes

ǫ(θ̂(s)) − ǫ(θ̂(t)) = (s− t)2k−2
θ θ̃(t)ΨΦΨT

θ̃(t)T − 2(s− t)k−1
θ θ̃(t)ΦΨT

θ̃(t)T

≤ (s− t)2k−2
θ λ3

∥∥∥θ̃(t)
∥∥∥
2

− 2(s− t)k−1
θ λ4

∥∥∥θ̃(t)
∥∥∥
2

= (s− t)k−1
θ

(
(s− t)k−1

θ λ3 − λ4

) ∥∥∥θ̃(t)
∥∥∥
2

−
∫ s

t

k−1
θ λ4

∥∥∥θ̃(t)
∥∥∥
2

dτ . (26)

Now, since (s− t) ≤ Ts,

kθ ≥ Tsλ3

λ4
⇒ kθ ≥ (s− t)λ3

λ4
⇒ (s− t)k−1

θ λ3 − λ4 ≤ 0.

Thus

ǫ(θ̂(s)) − ǫ(θ̂(t)) ≤ −
∫ s

t

k−1
θ λ4

∥∥∥θ̃(t)
∥∥∥
2

dτ . (27)

Moreover, from (25), we have that

θ̃(τ) = θ̃(t)
(
−(τ − t)k−1

θ Ψ+ I
)
, τ ∈ (t, t+ Ts] (28)

which implies that

∥∥∥θ̃(τ)
∥∥∥
2

≤
(
Tsk

−1
θ λ2 + 1

)2 ∥∥∥θ̃(t)
∥∥∥
2

(29)

Thus, the inequality in (27) yields

ǫ(θ̂(s)) − ǫ(θ̂(t)) ≤ −
∫ s

t

2β

γ

∥∥∥θ̃(τ)
∥∥∥
2

dτ . (30)

Substituting (30) in (22) yields

J(x(s)) ≤ J∗(x(t))−
∫ s

t

(
‖x(τ)‖2Q + ‖u∗(τ)‖2R + 2β

∥∥∥θ̃(τ)
∥∥∥
2
)
dτ . (31)

Finally, using the optimality of the value function at s, it follows that

J∗(x(s)) ≤ J(x(s)), (32)

which implies that

J∗(x(s)) ≤ J∗(x(t))−
∫ s

t

(
‖x(τ)‖2Q + ‖u∗(τ)‖2R + 2β

∥∥∥θ̃(τ)
∥∥∥
2
)
dτ .

Now, the asymptotic stability result for the closed-loop system in (15) is stated in the
following theorem.

Theorem 2. Suppose that the assumptions (A1)–(A3) are satisfied, also that the suf-
ficient condition and the hypothesis of Lemma 1 is satisfied, and that the open-loop
optimal control problem in (9)–(11b) is feasible for all t > 0, then the closed-loop system
in (15), in the absence of disturbance, with the model predictive control in (12) and the
concurrent learning based update law in (13), is asymptotically stable with asymptotic
parameter convergence.
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Proof. The proof stated here follows similar argument given in [10], with modifications

made to include the parameter convergence. First, define the function V (x, θ̃) for the
closed-loop system in (15) as follows:

V (x(t), θ̃(t)) = J∗(x(t)) +

∫ t

0

β
∥∥∥θ̃(τ)

∥∥∥
2

dτ . (33)

Then, V (x, θ̃) has the following properties:

• V (0,0) = 0 and V (x, θ̃) > 0 for (x, θ̃) 6= (0,0),

• V (x, θ̃) is continuous at (x, θ̃) = (0,0),

• along the trajectory of the closed-loop system starting from any x0 ∈ X, and for
0 ≤ t1 ≤ t2 ≤ ∞

V (x(t2), θ̃(t2))− V (x(t1), θ̃(t1)) ≤ −
∫ t2

t1

(
‖x(τ)‖2Q + β

∥∥∥θ̃(τ)
∥∥∥
2
)
dτ. (34)

To prove the first property, note that θ̃ = 0 ⇒ θ̂ = θ, which , from (5), implies that
ǫ(θ) = 0. Thus, It follows from Lemma A.1 in reference [9] that J∗(0) = 0. Consequently,
V (0,0) = 0. Similarly, the second property follows from the continuity of f(., ., .) over
Θ, and Lemma A.1 in reference [9]. The third property is due to Lemma 1 and R > 0.
As a result, using standard argument (see [26]), it can be shown that the equilibrium

(x, θ̃) = (0,0) is stable, in accordance with the Definition 2. That is, for each ε > 0,

there exists η(ε) > 0, such that
∥∥∥[x(0) θ̃(0)]

∥∥∥ < η(ε) implies that
∥∥∥[x(t) θ̃(t)]

∥∥∥ < ε for

all t ≥ 0. Moreover, V (x(t), θ̃(t)) ∈ L∞, ∀t ≥ 0, along the closed-loop trajectory. Next,

it will be shown that there exists η > 0 such that (x(t), θ̃) → (0,0) as t → ∞ for all∥∥∥[x(0) θ̃(0)]
∥∥∥ < η. This implies that the equilibrium (x, θ̃) = (0,0) is asymptotically

stable, in accordance with Definition 3.

Starting out with the inequality in (34), it follows by induction that
∫ ∞

0

(
‖x(τ)‖2Q + β

∥∥∥θ̃(τ)
∥∥∥
2
)
dτ ≤ V (x(0), θ̃(0))− V (x(∞), θ̃(∞)). (35)

Since V (x(∞), θ̃(∞)) ≥ 0 and V (x(0), θ̃(0)) ∈ L∞, it follows that
∫ ∞

0

(
‖x(τ)‖2Q + β

∥∥∥θ̃(τ)
∥∥∥
2
)
dτ ∈ L∞, (36)

which further implies that
∫∞

0
‖x(τ)‖2Q dτ ∈ L∞ and

∫∞

0
β
∥∥∥θ̃(τ)

∥∥∥
2

dτ ∈ L∞. Thus,

x(t), θ̃ ∈ L2. Furthermore,
∥∥∥[x(t) θ̃(t)]

∥∥∥ ∈ L∞, U compact , and f(., ., .) continuous

implies that f(x(t),u(t), θ̂(t)) ∈ L∞ for all t ∈ [0, ∞). Thus x(t) is uniformly continuous.

Also, computing the derivative of θ̃ from (28) using first principle yields

˙̃
θ(t) , lim

δ→0

θ̃(t+ δ)− θ̃(t)

δ
= k−1

θ Ψθ̃(t) ∈ L∞. (37)

Thus, θ̃(t) is also uniformly continuous. Consequently, ‖x(t)‖ and
∥∥∥θ̃(t)

∥∥∥ are uniformly

continuous in t on [0, ∞). Thus, it follows from Barbalat’s Lemma ([26]) that

‖x(t)‖ → 0, and
∥∥∥θ̃(t)

∥∥∥→ 0, as t → ∞. (38)
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5 Pseudospectral Implementation

In this section, the open-loop infinite horizon optimal control problem in (9)–(11b) is
transcribed into an NLP using pseudospectral method. First, the details of the collocation
are given. Then, the resulting NLP for the optimal control problem is formulated. The
effect of the pseudospectral approximation on the stability of the resulting closed-loop
system is also examined.

The most commonly used sets of collocation points are Legendre-Gauss (LG), Legendre-
Gauss-Radau (LGR), and Legendre-Gauss-Lobatto (LGL) points. They are obtained
from the roots of a Legendre polynomial and/or linear combinations of Legendre poly-
nomial and its derivatives. All three sets of points are defined on the domain [−1, 1],
but differ significantly in that the LG points include neither of the endpoints, the LGR
points include one of the end points, and the LGL points include both of the endpoints.

The LGR collocation scheme is used for the purpose of this paper. The reason for
this is because using the pseudospectral form of the LGR scheme results in a system of
equations that has no loss of information from the integral form (this is due to the special
form of the resulting differentiation matrix)[22]. For the infinite horizon part of the cost
functional in (10), the interval [−1, 1] is mapped into [t, ∞) using the change of variable

τ = φ(ν1), (39)

where φ is a differentiable, strictly monotonic function. Three examples of such functions
are given, based on the ones given in references [19, 21], as

φa(ν1) = t+
1 + ν1
1− ν1

(40)

φb(ν1) = t+ log

(
2

1− ν1

)
(41)

φc(ν1) = t+ log

(
4

(1− ν1)
2

)
. (42)

For the recorded data (the finite horizon part of the cost functional), the interval [0, T ]
is mapped into [−1, 1] using the affine transformation

τH =
T

2
(ν2 + 1). (43)

Let S(ν1) , dφ/dν1 ≡ φ′(ν1), then the infinite horizon optimal control problem in (9)–
(11b) becomes

min
(ū(.),ū(.),θ̄)

J(x(t), ū(.), x̄(.), θ̄)

=

∫ +1

−1

S(ν1)
(
‖x̄(ν1)‖2Q + ‖ū(ν1)‖2R

)
dν1

+
γT

2

∫ +1

−1

∥∥∥∥ẋH(ν2)−
T

2
f(xH(ν2),uH(ν2), θ̄)

∥∥∥∥
2

dν2 (44)

subject to

˙̄x(ν1) = S(ν1)f(x̄(ν1), ū(ν1), θ̄), x̄(−1) = x(t) (45a)

ū(ν1) ∈ U . (45b)
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Here, x̄(ν1), ū(ν1) and θ̄(ν1) denote the state, the control and the parameter estimate as
a function of the new variable ν1. The independent variable ν2 denotes the transformed
time variable for the recorded data.

Next, the discrete approximations using LGR pseudospectral scheme is described. Con-
sider the LGR collocation points −1 = τ1 < . . . < τN < +1, and the additional non collo-
cated point τN+1 = +1. The interior of the collocation points are given by the zeros of the

derivative of the Nth-order Legendre polynomial LPN
(x), i.e {τj}N−1

2 ,
{
x : L′

PN
(x) = 0

}

[7]. The state is then approximated by a polynomial of degree at most N as follows:

x(ν1) ≈
N+1∑

j=1

XjLj(ν1), (46)

xH(ν2) ≈
N+1∑

j=1

XHj
Lj(ν2), (47)

Lj(ν) =

N+1∏

k=1
k 6=j

ν − τk
τj − τk

, j = 1, . . . , N + 1, (48)

where Lj is a basis of Nth-degree Lagrange polynomials. Differentiating the state ap-
proximations in (46) and (47), and evaluating at the collocation points yields

ẋ(τi) ≈
N+1∑

j=1

XjL̇j(τi) =

N+1∑

j=1

DijXj = DiX, (49)

ẋH(τi) ≈
N+1∑

j=1

XHj
L̇j(τi) =

N+1∑

j=1

DijXHj
= DiXH (50)

where

Dij = L̇J(τi), X =




X1

...
XN+1


 and XH =




XH1

...
XHN+1


 .

The matrix D ∈ RN×(N+1) with entries Dij , (i = 1, . . . , N ; j = 1, . . . , N + 1) is the
Radau Pseudospectral Differentiation Matrix, since it transforms the state approximation
at the points τ1, . . . , τN+1 to the derivatives of the state approximation at the LGR points
τ1, . . . , τN . As result, using this formulation averts the use of any numerical smoothing
techniques, otherwise needed to compute the state derivatives for the recorded data.

It is noted that the matrix XH is composed of the state approximations of the recorded
data at the collocation points only. These are generally unknown, since the recorded data
are assumed to be measured at specific points which are generally not the collocation
points. As a result, a transformation is needed to express XH in terms of the measured
recorded data Xm

H ∈ R
Nm×(N+1), where Nm is the number of measurement points. It is

required that Nm > N to ensure that the corresponding measured data maps to a unique
set of XH . Let ν2 = σ1, . . . , σNm

denote the measurement points for the recorded data,
then from (47)

xH(σk) ≈
N+1∑

j=1

XHj
Lj(σk), k = 1, . . . , Nm. (51)
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Thus,

Xm
H = MxXH , (52)

where the matrix Mx ∈ R
Nm×(N+1) has entries Mxkj

= Lj(σk). Since Nm ≥ (N + 1), it
follows from the orthogonality of the Legendre polynomials that rank(M) = N +1. As a
result

XH = M †
xX

m
H =

(
MT

x Mx

)−1
MT

x Xm
H (53)

will yield a unique state approximation data XH for every unique measured state data
Xm

H . Similarly, the open-loop control signals at the collocation points are given in terms
of the open-loop controls at the measurement points as

UH = M †
uU

m
H =

(
MT

u Mu

)−1
MT

u Um
H , (54)

where the matrix Mu ∈ R
Nm×N has entries Mukj

= Lj(σk).

Let U ∈ RN×m be a matrix whose ith row Ui is an approximation to the control
u(τi), 1 ≤ i ≤ N . The discrete approximation to the system dynamics in (45a) is
obtained by evaluating the system dynamics at each collocation point and replacing ẋ(τi)
by its discrete approximation DiX . Hence, the discrete approximation to the system
dynamics is given by

DiX = S(τi)f(Xi,Ui, θ̄), 1 ≤ i ≤ N. (55)

Next, the objective function in (44) is approximated by a Legendre-Gauss quadrature as
follows:

J ≈
N∑

i=1

wi

(
S(τi)

(
‖Xi‖2Q + ‖Ui‖2R

)

+
γT

2

∥∥∥∥DiM
†
xX

m
H − T

2
f(êiM

†
xX

m
H , êiM

†
uU

m
H , θ̄)

∥∥∥∥
2
)
, (56)

where êi is the ith row of the identity matrix of appropriate dimension and wi is the
quadrature weight, associated with τi, given by [23]

wi =

{
1−τi

(NPN−1(τi))
2 τi 6= −1

2
N2 τi = −1

, (57)

where PN−1 is the (N−1)th Legendre polynomial. The continuous-time nonlinear infinite-
horizon optimal control problem in (9)–(11b) is then approximated by the following NLP:

min
(U,X,θ̄)

J̄(x(t), U,X, θ̄)

=
N∑

i=1

wi

(
S(τi)

(
‖Xi‖2Q + ‖Ui‖2R

)

+
γT

2

∥∥∥∥DiM
†
xX

m
H − T

2
f(êiM

†
xX

m
H , êiM

†
uU

m
H , θ̄)

∥∥∥∥
2
)
, (58)
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subject to

DiX − S(τi)f(Xi,Ui, θ̄) = 0, 1 ≤ i ≤ N, (59a)

x(t)−X1 = 0, (59b)

Ui ∈ U , 1 ≤ i ≤ N (59c)

θ̄ ∈ Θ. (59d)

Let U∗
i , 1 ≤ i ≤ N and θ̄

∗
be the solution of the NLP in (58)–(59d), then the closed-

loop control and parameter update laws in (12) and (13) becomes

u(τ) =

N∑

j=1

U∗
jLj(φ

−1(τ)), (60)

θ̂(τ) = θ̄
∗
+

(τ − t)T

2kθ

N∑

j=1

wjΓ(τj)
T

(
DiM

†
xX

m
H − T

2
f(êiM

†
xX

m
H , êiM

†
uU

m
H , θ̄

∗
)

)
. (61)

Also, the PE condition requirement of Lemma 1 reduces to the rank condition

rank




N∑

j=1

wjfθ(êiM
†
xX

m
H , êiM

†
uU

m
H , θH)fθ(êiM

†
xX

m
H , êiM

†
uU

m
H , θH)T


 = p, (62)

for all θH ∈ Θ. This is consistent with the original work in [11] for the special case with
LP assumption.

5.1 Stability Considerations

Next, the effect of the pseudospectral approximation on the stability of the system is
examined. First, some existing established results on the properties of pseudospectral
approximations are provided. From these results, the stability of the closed loop system
resulting from the control law in (60) is studied. Similar to Section 4, except otherwise
required for clarity, the shorthands

J(x(t)) , J(x(t), ū, x̄, θ̄)

J∗(x(t)) , J(x(t), ū∗, x̄∗, θ̄
∗
)

J̄(x(t)) , J̄(x(t), U,X, θ̄)

J̄∗(x(t)) , J̄(x(t), U∗, X∗, θ̄
∗
)

are used.

Lemma 2 (Interpolation Error Bounds [7], Section 5.4.3). If x , [x1, . . . , xn] ∈ Hα
n , with

xi ∈ Hα, i = 1, . . . , n, then there exist Xj = x(τj), j = 1, . . . , N+1, and c1, c1i , c2, c2i > 0
such that:

(a) The interpolation error is bounded,

∥∥∥∥∥∥
x(τ)−

N+1∑

j=1

XjLj(τ)

∥∥∥∥∥∥
2

≤
n∑

i=1

∥∥∥∥∥∥
xi −

N+1∑

j=1

XijLj(τ)

∥∥∥∥∥∥
2

≤
n∑

i=1

c1iN
−α ‖xi‖(α)

≤ c1N
−α. (63)
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(b) The error between the exact derivative and the derivative of the interpolation is
bounded,

‖ẋ(τ) −D(τ)X‖2 ≤
n∑

i=1

∥∥∥∥∥∥
ẋi −

N+1∑

j=1

XijL̇j(τ)

∥∥∥∥∥∥
2

≤
n∑

i=1

c2iN
1−α ‖xi‖(α)

≤ c2N
1−α, (64)

where, D(τ) = [L̇1(τ), L̇2(τ), . . . , L̇N+1(τ)].

Remark 3. It is straightforward to see, using the orthogonality property of the Lagrange
interpolation polynomial, that the interpolation error is zero at the collocation points.
In other words, the approximation is exact at the interpolation points. As a result,
any feasible point of the optimization problem in (44)–(45b) represents the actual system
dynamics at the collocation points and the error due to interpolation elsewhere is governed
by Lemma 2.

Lemma 3 (Feasibility, Convergence, and Consistency of pseudospectral approximations
[24]). Let x̄∗(τ) ∈ Hα

n , ū
∗(τ) ∈ Hα

m and θ̄
∗
be the solution of the optimal control problem

in (44)-(45b), and X∗ and U∗, the solution of the corresponding NLP in (58)–(59d), then
the error in the optimal cost functional due to the pseudospectral approximation can be
upper bounded as follows;

∣∣J(x(t), ū∗, x̄∗, θ̄
∗
)− J̄(x(t), U∗, X∗, θ̄

∗
)
∣∣ ≤ µ(t)N−α, (65)

where µ(t) > 0 is bounded with bounded derivatives.

Theorem 3. Suppose that the assumptions (A1)–(A3) are satisfied, also that the suf-
ficient condition and the hypothesis of Lemma 1 is satisfied, and that the open-loop
optimal control problem in (9)–(11b) is feasible for all t > 0, then the closed-loop system
in (15), in the absence of disturbance, with the model predictive control in (60) and the
concurrent learning based update law in (61) determined from the solution of the NLP in
(58)–(59d), is uniformly ultimately bounded. Moreover, the ultimate bound can be made
arbitrarily small by the choice of the number of collocation points.

Proof. It has been shown that the feasibility of the open-loop optimal control problem
in (9)–(11b) implies the feasibility of the NLP in (58)–(59d) (See [24]). Using Lemma 3,
the relationship between the value function of the finite-horizon optimal control problem
in (44)-(45b) and the optimal value of the finite-dimensional NLP in (58)–(59d) can be
expressed as

J̄∗(x(s)) = J∗(x(s)) + µ1(s)N
−α, µ1(s), µ̇1(s) ∈ L∞ (66)

for all s ∈ (t, t+ Ts]. Thus, using Lemma 1, it follows that

J̄∗(x(s)) ≤ J∗(x(t))−
∫ s

t

(
‖x(τ)‖2Q + ‖u∗(τ)‖2R + 2β

∥∥∥θ̃(τ)
∥∥∥
2
)
dτ + µ1(s)N

−α

= J̄∗(x(t))−
∫ s

t

(
‖x(τ)‖2Q + ‖u∗(τ)‖2R + 2β

∥∥∥θ̃(τ)
∥∥∥
2
)
dτ

+ (µ1(s) + µ2(s))N
−α, µ2(s), µ̇2(s) ∈ L∞, (67)
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or

J̄∗(x(s)) ≤ J̄∗(x(t)) −
∫ s

t

(
‖x(τ)‖2Q + ‖u∗(τ)‖2R + 2β

∥∥∥θ̃(τ)
∥∥∥
2
)
dτ

+ µ(s)N−α, µ(s), µ̇(s) ∈ L∞. (68)

Similarly, to the proof of Theorem 1, define the function

V (x(t), θ̃(t)) = J̄∗(x(t)) +

∫ t

0

β
∥∥∥θ̃(τ)

∥∥∥
2

dτ. (69)

Taking the time derivative of V (x(t), θ̃(t)) yields

V̇ (x(t), θ̃(t)) = lim
s→t

(
V (x(s), θ̃(s))− V (x(t), θ̃(t))

s− t

)
(70)

= lim
s→t

(
J̄∗(x(s))− J̄∗(x(t))

s− t
+

1

s− t

∫ s

t

β
∥∥∥θ̃(τ)

∥∥∥
2

dτ

)
, (71)

which, after using (68), can be upper bounded as

V̇ (x(t), θ̃(t)) ≤ − lim
s→t

1

s− t

∫ s

t

(
‖x(τ)‖2Q + ‖u∗(τ)‖2R + β

∥∥∥θ̃(τ)
∥∥∥
2
)
dτ

+ µ̇(t)N−α

≤ − lim
s→t

1

s− t

∫ s

t

(
‖x(τ)‖2Q + β

∥∥∥θ̃(τ)
∥∥∥
2
)
dτ + µ̇(t)N−α, (72)

which simplifies4 to

V̇ (x(t), θ̃(t)) ≤ −‖x(t)‖2Q − β
∥∥∥θ̃(t)

∥∥∥
2

+ µ̇(t)N−α (73)

≤ −‖x(t)‖2Q − β
∥∥∥θ̃(t)

∥∥∥
2

+ cN−α (74)

for some c > 0, since µ̇ is bounded. Thus the state and parameter estimation error are
uniformly ultimately bounded [26]. From (74), it is clear that the ultimate bound can be
made arbitrarily small by choosing N appropriately.

6 Numerical Example

The following numerical examples are given to demonstrate the proposed control method.

6.1 Example 1

Consider a system described by the following ODEs:

ẋ1 = (θ1 + |θ2x1|)x2 + u,
ẋ2 = θ2x1.

(75)

Here,

fθ =

[
x2 0

sgn(θ2x1)x1x2 x1

]
, (76)

4If f(t) is integrable, then there exists a function F (t) such that F ′(t) = f(t). Thus

lims→t
1

s−t

∫
s

t
f(τ)dτ = lims→t

F (s)−F (t)
s−t

= F ′(t) = f(t)
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and Γ(τ) is chosen as

Γ(τ) =

[
x2(τ) 0
0 x1(τ)

]
. (77)

Thus, the condition in (14) is satisfied with

λ1 = min
{∫ T

0 xH1
(τH)2dτH ,

∫ T

0 xH2
(τH)2dτH

}

λ2 = max
{∫ T

0 xH1
(τH)2dτH ,

∫ T

0 xH2
(τH)2dτH

}
.

(78)

The recorded data is generated using the open loop control

u(t) = 0.1 sin(5t) + 0.05 cos(2t), (79)

which results in the values of λ1 = 0.0021 and λ2 = 0.0155. The measurement sampling
time is set to Ts = 0.4s. As a result, the optimization routine runs for 0.4s until the
next measurement is available. Meanwhile, within the interval τ ∈ [t, t+Ts], the control
algorithm runs in an open loop fashion based on (60) and (61), using the present state
estimate and predictions. The inverse learning rate is set to kθ = 5Tsλ3/λ4 = 0.0309.
The number of LGR nodes used is 5, and the size of the recorded data used is Nm = 50.

Figure 1: State trajectory, Ts = 0.4s

Figure 2: Control trajectory, Ts = 0.4s
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Figure 3: Parameter estimate trajectory, Ts = 0.4s

Figure 1 shows that the resulting state trajectory converges to the origin asymptotically.
The control authority is shown in Figure 2. The faint vertical lines show the measurement
points and how the control is updated at those points. Figure 3 shows that the parameter
estimates converge to the true parameters.

Figure 4: Effect of the number of LGR nodes on parameter estimation

As shown in Figure 4, the more the number of LGR nodes, the better the “goodness” of
the parameter estimation. This is because a better approximation of the system dynamics
is obtained by increasing the number of LGR nodes. As a result, the system parameter
are better approximated.

In order to demonstrate the effect of Ts on the control system, another simulation is
carried out with Ts = 1s. Figure 5 through Figure 7 show the resulting state, control and
parameter estimate trajectories. It is seen that the parameter estimate, and consequently
the control and system response, converges more slowly with increase sampling time.

6.2 Example 2

This example demonstrates the special case of linearly parametrized systems. The system
considered is a mass-spring-damper system whose dynamics is given by

d

dt

[
x1

x2

]T
=

[
x2

− k
mx1 − b

mx2 +
1
mu

]T
, (80)
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Figure 5: State trajectory, Ts = 1s

Figure 6: Control trajectory, Ts = 1s

Figure 7: Parameter estimate trajectory, Ts = 1s

where m, k, b denote the system mass, spring constant, and damping coefficient values
respectively. The dynamics is linearly parametrized as follows

d

dt

[
x1 x2

]
=
[
θ1 θ2 θ3 θ4

]



x2 0
0 −x1

0 −x2

0 u


 , (81)
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where the unknown parameters are given by θ1 = 1, θ2 = k/m, θ3 = b/m, θ4 = 1/m, where
m = 2kg, k = 5Nm, b = 0.8Ns/m. Two simulations were carried out; one in which the
control is unconstrained, and the other in which the constraint |u| ≤ 0.5 is imposed on the
control authority. Figures 8 through 10 show the states trajectory, control authority and
the parameter updates. As expected, it is seen that the settling time for the constrained
case is longer than the unconstrained case. Note that, in this example, the number of
unknown parameters is more than the number of states.

(a) Unconstrained (b) Constrained

Figure 8: State trajectory

(a) Unconstrained (b) Constrained

Figure 9: Control trajectory

(a) Unconstrained (b) Constrained

Figure 10: Parameter estimate trajectory
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7 Conclusion

A direct adaptive control technique is presented for use, in conjunction with concurrent
learning approach, within the framework of model predictive control. The presented
control technique undermines the need to switch between online learning phase and control
phase by modulating the control sequences and the parameter estimates simultaneously
at each computation instant. Theoretical analysis shows that the concurrent learning
based adaptive model predictive control system is asymptotically stable with asymptotic
parameter convergence. Numerical simulation results validated the theoretical claims
and also showed that parameter estimation error decreases with increasing number of
LGR nodes. However, associated with increased number of LGR points is increased
computational burden. Therefore, a trade off is necessary between computational burden
and parameter estimation error.

In future, the effect of actuator dynamics will be considered. Also, other discretization
methods will be considered. Candidate discretization methods are; the use of Laguerre
functions, other collocation methods like Runge-Kutta, etc.
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