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Abstract— Integration of modern defence weapons into ship
power systems poses a challenge in terms of meeting the high
ramp rate requirements of those loads. It might be demanding
for the generators to meet the ramp rates of these loads. Failure
to meet so, might lead to stability issues. This is addressed
by conglomeration of generators and energy storage elements
to handle the required power demand posed by loads. This
paper proposes an energy management strategy based on model
predictive control that incorporates the uncertainty in the
load prediction. The proposed controller optimally coordinates
the power split between the generators and energy storage
elements to guarantee that the power demand is met taking
into considerations the ramp rate limitations and the load
uncertainty. A low bandwidth model consisting of a single
generator and a single energy storage element is used to validate
the results of the proposed energy management strategy. The
results demonstrate the robustness of the controller under
load prediction uncertainty and demonstrate the effect of load
uncertainty on battery capacity loss.

I. INTRODUCTION

Advancements in modern warfare defence mechanisms
has led to integration of loads such as electric propulsion
motor, radars and other highly non-linear loads into ship
power system (SPS). These ever increasing loads could only
escalate the ramp rate requirements need to be met by
power generation modules (PGMs). In SPS all the electrical
machines are considered and configured as a single system
namely, integrated power system (IPS). With this configura-
tion it is difficult to accommodate the number of generators
required to meet the required load demand adhering to ramp
rate requirements. Considering the restrictions on the weight
and ship hull dimensions, adding additional generators is not
viable. Thus, an alternate energy source with high ramp rate
capabilities needs to be added to SPS to mitigate the ramp
rate disparities between generators and heavy loads. This
problem has been addressed by addition of energy storage
systems (ESSs) to the IPS. Thus, the type of distribution
system plays a pivotal role in design of IPS components,
the transfer from AC to DC distribution system has been
proposed in [1]. Most of the existing SPS models consider
the DC distribution systems over AC. Since, DC systems are
more efficient and easy to design and analyze [2].

Integration of ESSs to SPS provides an additional degree
of freedom. ESSs can be used to support the high ramp rate

Authors are with the Department of Electrical and Computer
Engineering, Center for Advanced Power systems, Florida
State University, Tallahassee, FL 32310, USA E-mail:
{svedula, mmohammadibijaieh, eotiboateng,
oanubi}@fsu.edu

loads. Having multiple ESSs enables seamless operation, as
having one ES element out of commission does not hinder
SPS operability. The ultimate goal of the SPS operation is
to meet the load demand using both generators and ESSs
abiding by the ramp rate limitations of respective systems.
This task of managing power requirements is steered by
an energy management (EM) layer. The main goal of the
EM layer is to ensure optimal power distribution subject to
prescribed efficiency curves for generators and specific state
of charge (SoC) constraints for ESSs, while meeting the load
requirements. Most of the existing EM techniques are based
on Model predictive control (MPC).

MPC is an established method used in control of elements
involving set of constraints to comply with. MPC was
initially designed as a control for slow processes. It was first
deployed in chemical process control during the later parts
of twentieth century. Substantial developments were made to
the MPC control process over the period of time, extending
the established concepts to nonlinear MPC and robust MPC.
Burgeoning growth in data processing capabilities has led to
the use of MPC in fast systems such as power electronics.
The power of MPC lies in its ability to operate based on
system model information over a prediction horizon and
solves the optimization problem at every prescribed time
step throughout the horizon. The system limitations such as
State of power (SOP) and generator and ESSs ramp rate
limitations can be actively handled by the MPC problem. The
desired criteria to be achieved by the system is specified as
objective function, traditionally as a least squares problem in
combination with a cost function associated with generator or
ESSs effectiveness. Thus, objective function is also referred
by some as cost function [3][4].

MPC based optimization problems can be designed in
numerous ways such as: Centralized, Decentralized and
Distributed optimization methods. While usage of each of
these methods depends on the interest of designer, centralized
MPC approaches have been widely used in SPS applications
[5][6]. While the topic of using centralized or distributed or
decentralized MPC for EM and their advantages is widely
debated, the concept of distributed control has also been
proposed for EM of SPS [7]. As discussed before, ramp
rate limitations play salient role with high ramp rate loads
incorporated into the power system. This calls for an im-
provised MPC problem which takes into consideration the
ramp rate limitations for individual power supply elements
in SPS [8]. Reviewing previously proposed EM methods,
this paper presents an MPC energy management method



Fig. 1: Energy Management Structure for SPS.

considering the uncertainty in the load prediction. In this
work, we have considered the power uncertainty in form of
noise injected into load forecast. Varying noise power from
1% to 10% is injected into load forecast and the resulting
effect on the robustness of the controller, the battery target
SoC and battery capacity loss is studied. The rest of the paper
is organized as follows: Section-II presents the nomenclature
used through rest of the paper, some insight into the SPS
power flow model, PCM model used in this work and the
battery ESS degradation model considered in this work. In
Section-III the design of the proposed EM strategy is derived.
Section-IV presents the evaluation of the proposed EM in
Simulink environment.

II. SYSTEM MODEL

This section presents the mathematical notations used
throughout the rest of the paper and introduces basic concepts
behind the SPS model such as power flow in SPS, the PCM
component model used in this work and the battery capacity
loss model.

A. Nomenclature

This section presents the following notations used through-
out the paper: N denotes the natural number space, R denotes
the real number space, Rq denotes real vectors of length
q and Rq×p represents the real matrix with q rows and p
columns respectively. R+ represents the positive real number.
Lower case alphabets represent the real and natural scalars
respectively (e.g u ∈ R and u ∈ N) and lower case bold
alphabets represent the real vectors (e.g u ∈ Rq). The vector
of all ones is represented as 1. For a vector u,ui denotes its
ith element. ‖.‖ denotes the two norm.

B. Power-flow Model

The Ship power system is considered as an islanded
MVDC microgrid (MGs). The SPS model presented by the
U.S Office of Naval Research (ONR) consists of 4-Zones
[9]. In Fig.1 the bottom half of the picture represents the
zonal structure of the SPS. PGMs consists of multiple fuel
driven generators and rectifier circuits. The voltage and
current controllers which are categorized as device level
controllers (DLCs) are also part of PGMs. PCMs consist of
power converters, energy storage systems such as batteries
and ultra-capacitors and few AC and DC loads. A common
12kV DC bus connects all the zones. The power generation
capacities must meet the power demand requirements under
any given circumstance such as: high ramp rate load and
load uncertainty. Thus, the net power must always be close
to zero or within the acceptable tolerance limits. Thus the
SPS power-flow can be represented as:

g(pg,pb,pl) = 0 (1)

Where pg ∈ Rng represents the power injected by ng number
of generators, pb ∈ Rnb represents the power injected by nb
number of ESSs. pl ∈ Rnl represents nl number of loads in
the system. The ESSs can operate bidirectionally, it can be
used to support the load requirements and while not in use,
it can be operated to reach specified or target SoC.

C. PCM Model and ESSs Degradation Model

Lumped ESSs comprising hybrid energy storage system,
battery energy storage system (BESS), flywheels is consid-
ered as main PCM components in this work. The dynamics of
BESS used in this work and the battery current calculations
are based on [10]. The following dynamics present the



relationship between the SoC of the battery and the power
injected pb:

SoC =
Q0vb

1
3600

∫
pb(t)dt

QTvb
(2)

Where Q0 is the initial energy stored in BESS in AHr and
QT is the total energy stored in BESS in AHr. vb represents
the bus voltage to which the BESS is coupled.

The battery degradation model considered in this work is
based on [11]. This model provides the battery capacity loss
based on Ah-throughput. The capacity loss is formulated as
an exponential function of current throughput. The generator
aging or degradation model used is also an exponential model
which is a function of power injected [12].

III. ENERGY MANAGEMENT DEVELOPMENT

The energy management problem is posed as an MPC
problem. Consider the following MPC problem:

Minimize:

h∑
k=1

∥∥∥pgk
+ pbk
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The initialization powers for the MPC problem are pg0
and

pb0 . These represent the instantaneous power measurements
coming into the optimizer from the system generators and
ESSs. pgm

and pbm
represent the instantaneous measurements

of generator power and ESSs power. Where pgk
is the

power injected by the generators at the given instant k.
pbk

is the power injected or absorbed by the ESSs. pf
l is

the load forecast with uncertainty.The noise is added as
uncertainty to the forecasted load. h ∈ N is the horizon of
the MPC problem. The problem in (3a) is solved subject to
the constraints over the specified horizon h at every time
instant k. C : R −→ R+ is the cost capturing the attributes
such as efficiency for generators. For ESSs the cost can be
associated with effective battery degradation. γ > 0 is a
positive scalar weight which is used to address the effect of
cost in the objective function. The case of γ = 0 represents
that the cost is not considered in the objective problem. The
equation (3b) represents the equality constraint of the MPC
problem. QT represents the total capacity of the ES element.
v∗b represents the measured or instantaneous voltage at the
bus to which the ESS is coupled. q0 is the SoC measured at
the beginning of the horizon, this comes as an input from the
system as a measurement to the controller. qh is the desired
target SoC at the end of the horizon. Ts is the time step
of the simulation. Equations (3e) and (3f) represent the box

constraints of the optimization problem. p
b

represents the
lower power limitations on the ESS and pb represents the
upper power restrictions on the ESS. p

g
represent the lower

power limitations on the generator power and pg represent
the upper power limitations on the generator power. While
p

b
can be negative due to bidirectional nature of the ESS,

p
g

is strictly greater than zero or equal to zero. Equations
(3g) and (3h) represent the inequality constraints associated
with the MPC problem. rg corresponds to the ramp rate
limitations of the generators and rb corresponds to the ramp
rate limitations of the ESSs. The MPC problem mentioned
in (3a)-(3h) is hard to use for simulation purpose. Thus, a
simplified version of it is derived which is easy to implement
using existing solvers such as fmincon and quadprog in
MATLAB-Simulink. The reformulation of the MPC problem
is as follows:

Minimize:
1

2
xTHx + fTx (4a)

s.t. Aeqx = beq (4b)
Ax � b (4c)
LB � x � UB (4d)

Where x =

[
pgk

pbk

]
represents the vector of generator

and battery powers. The above reformulation is a quadratic
program. The conversion to the above reformulation from
the initially proposed MPC form in (3) is presented in [13].

IV. SIMULATION EXAMPLE
The simplified single PGM, PCM and Load model shown

in Fig.2 is considered for simulation purpose. The PGM,
PCM and the Load models used in this work are low fidelity
mathematical models based on [14]. The simplified model
is implemented in the Simulink environment. Table-I shows
the component ratings such as generational capacities, ramp
rate limitations, lower and upper power limitations for both
generator and battery elements that have been used in this
simulation. The simulation is based on the problem in (3a)-
(3h). The overall EM optimizer and the PGM and PCM
models including the DLCs are designed and implemented
in Simulink. The time step considered for the MPC problem
is 10−4sec. The rate transition of 10−3sec is considered
between the EM layer and the system, accommodating for
the time constants of the device level components of the
system. The effect cost of generation in the objective function
in this work is considered to be zero i.e γ is considered to
be zero.

TABLE I: System Components Power Ratings

PGM, PCM and Load Ratings
Power (MW) RR (MW/sec) LL (MW) UL (MW)

PGM 29 2.9 0.29 27.5

PCM 30 10 -10.64 10.64

Load 30 10 - -

The following scenario has been implemented and their
results have been presented: the scenario demonstrates the



Fig. 2: Simplified Single PGM, PCM and Load Model Used
for Simulation.

behavior of controller under load forecast with 10% added
forecast uncertainty. The control power input to the battery
from the optimizer and the variations in the SoC of the
battery and the battery capacity loss % are also studied and
presented for the scenario mentioned above. In the above
mentioned scenario the target SoC qh is assumed to be
constant. The target SoC or the SoC at the end of the horizon
is considered as 0.77. The initial SoC which acts as an input
to the optimizer from the system can be seen from the Fig.4
as 0.8. The SoC of the battery and the battery capacity loss
are also shown in Fig.4. Fig.3 shows the actual load profile
superimposed on the load with 10% uncertainty. The power
forecast is generated with assumption of deploying pulsed
power loads (PPL) multiple times in a given duration. The
peaks in Fig.3 represent PPLs. The simulation performed is
a closed loop MPC problem. The simulation run-time is 10
seconds. The degradation of components is accelerated in
order to accommodate for the time constraint and also reach
the component end of life. Thus, the time axis for figures
refers to time as accelerated end life. Due to the initialization
values of generator and ESSs, initially the simulation starts
at an infeasible point as seen in Fig.6. But, as the controller
starts enforcing the load forecast on the system, the system
decision variables generator power and battery power begin
converging to a feasible point and start tracking the desired
load power.

Fig. 3: Actual Load vs the Lower forecast with uncertainty.

The generator power, the generator state of power (SoP)

Fig. 4: Optimization power input to the battery, the state of
charge of the battery in response to the power injection and
the battery capacity loss.

Fig. 5: Optimization power input to the generator, the state
of power of the generator in response to the power injection
and the generator degradation.

Fig. 6: Closed Loop Simulation result for power injected by
generator and battery to meet the required load demand.



and the generator degradation are plotted in Fig.5. In this
work the generator SoP is considered to be the instantaneous
power of generator divided by the rated power of the gener-
ator. The interrelation between noise power intensity, target
SoC and the battery capacity loss is presented in Fig.7. The
noise power used in this case is the noise sweep performed
from power intensities 1% to 10% and in this case the target
SoC is swept from 0.8 to 0.6. Parallel simulation parsim
environment in simulink is used to simulate the system
multiple times in parallel with above mentioned noise power
and target SoC sweeps. The data on capacity loss for a certain
target SOC and forecast uncertainty is obtained from 400
parallel simulations and is plotted in Fig.7. The simulation
results shown in Fig.7, the degradation curve, demonstrate
the robustness of controller under load uncertainty. The
simulations show the relationship between target SoC and
the battery capacity loss to be quadratic.

Fig. 7: BCL: Battery Capacity Loss. First figure shows the
relationship between capacity loss, target SoCs and forecast
uncertainty. Second figure shows the quadratic relation be-
tween capacity loss and target SoCs.

V. CONCLUSIONS

This paper presents a model predictive control based
energy management strategy for SPS with load forecast
uncertainty. The uncertainty is introduced as noise power and
its effect on controller robustness, battery capacity loss are
studied. Different noise power simulations are implemented
in parallel in simulink. The simulations demonstrate the
robustness of the controller. The simulations also show the
effect of forecast uncertainty on battery capacity and the rate
of BESS usage. The target SoCs role in battery degradation
is also presented. Finally, the degradation curve for ESS is
presented. While, the proposed the controller is implemented
on a simple PGM, PCM and Load model, the future objective
is to extend this work to the 2-zone and 4-zone SPS model
and add a battery degradation aware term into the objective
function as a decision variable which solves the optimal
power split problem based on current ESS degradation. The

idea is to make use of the obtained degradation curve as bat-
tery cost. Thus, the future iteration of this work will include
a predictive control problem which takes into consideration
the battery degradation as cost function.
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