
Data-driven Vulnerability Analysis of Networked Pipeline System

Yu Zheng1 GSIEEE, Olugbenga Moses Anubi1 SMIEEE

Abstract— This paper introduces an attack generation frame-
work for evaluating the vulnerability of nonlinear networked
pipeline systems. The vulnerability analysis is formulated as
determining the presence of feasible attack sets, defined by
boundary functions representing the effectiveness and stealthi-
ness of attack signals with respect to the objective and attack
detection module. The framework utilizes three data-driven
models, including two discriminative models that learn the
boundary functions and a generative model that produces
elements of the feasible attack set. A new loss function ensures
successful attack generation with high probability.

I. INTRODUCTION

Networked pipeline systems (NPS) play a crucial role in
transporting essential resources such as oil and gas. With the
increasing integration of information and control techniques
in these systems, they are becoming more vulnerable to cyber
attacks, which can have severe consequences on the safety,
security, and reliability of pipeline operations. Examples
include the recent Colonial pipeline ransomware attack [1],
Stuxnet attack [2], and more. Supervisory control and data
acquisition (SCADA) is a critical part of NPS containing data
collection, state estimation, and decision processes. The state
estimation process could be misled maliciously by compro-
mising only a small portion of the IoT-based measurement
system [3]. Modifying the control inputs at the automatic
control layer could result in catastrophic consequences on
physical assets [4].

Assessing the vulnerability of NPS is a challenging task,
as it requires a thorough understanding of the complex
interplay between the physical and cyber components of
the system and the potential attack scenarios. Several attack
generation techniques have been proposed in the literature to
address the vulnerability analysis problem in cyber-physical
systems (CPS). These techniques range from mathematical
and analytical methods to data-driven and simulation-based
approaches. For example, the authors [5] define vulnerability
under sensor attacks as the boundedness of the estimation
error, and derive sufficient and necessary conditions through
analysis of the system’s reachable unstable zero dynamics.
The authors in [6] characterize attacks using an asymptotic
detection performance (ADP), defined as the rate of decrease
in the worst-case probability of error. However, the nonlinear
nature of many networked pipeline systems makes the attack
generation problem challenging. Recent approaches have
begun to explore sample-based solutions. Some works have
trained generative adversarial networks (GANs) to learn from

1Yu Zheng and Olugbenga Moses Anubi are with the Department of
Electrical and Computer Engineering, Florida State University, FL, USA.
yzheng6@fsu.edu, oanubi@fsu.edu

existing attack datasets [7], but this relies on the existence
of non-generative attack datasets and good representative
quality of the training data. The authors in [8] used data-
driven models to approximate the system model, which
reduces the complexity of the attack generation problem.

While these methods have been shown to be effective in
various applications, they are limited in their ability to either
capture the nonlinear nature of networked pipeline systems or
the lack of prior non-generative attack datasets. In this paper,
we present an attack generative framework that addresses
these limitations by integrating physical runtime data of the
pipeline system and a data-driven attack generation approach.
This approach can be applied to both linear and nonlinear
systems without relying on the system’s model information
or prior attack datasets.

The remainder of the paper is organized as follows. In
section II, the notations used in the paper are given. In
section III, we present the models of the networked pipeline
system and formulate the attack generation problem. In
section III, we present the data-driven vulnerability analysis
framework, introduce a new loss function, and propose a
training procedure to avoid biased learning. In section V, we
implement the proposed method on a case study of a gas
pipeline segment. All conclusive remarks follow in section
VI.

II. NOTATIONS

We use Rn,R+ to denote the space of real vectors of length
n and positive real numbers respectively. The probability
triple is denoted by (Ω,F ,Pz) [9], where Ω is a sample
space containing the set of all possible outcomes, F is an
event space, and Pz is the associated probability functions
of the events in F . We use the symbol E to denote the ex-
pected value operator. An undirected graph G (V ,E) contains
vertices, denoted by E = {v1,v2, . . . ,vn}, and edges, denoted
by E ∈V ×V . (v1,v2) and (v1,v2) ∈ E represents an edge
in G . Consequently, the adjacency matrix, denoted by A(G),
is a square matrix of size |V |, defined as [10]

Ai j =

{
1 if (vi,v j) ∈E ,
0 otherwise .

III. MODEL DEVELOPMENT

In this section, we introduce the models of the networked
pipeline system, including the physical plants, network dy-
namics, a supervisory control and data acquisition (SCADA)
system, and an attack model. Fig 1 illustrates the system,
featuring two control layers. The supervised control layer
collects measurement data from IoT sensors across the net-
work, estimates system states, identifies measurement errors,

Fig. 1. A schematic diagram of SCADA for networked pipeline system
under adversarial attacks

and generates the reference for the local controllers. The
automatic control layer consists of lower-level controllers of
the compressor stations.

A. System Model

A nonlinear creep flow model is used to describe the gas
flow in a pipeline segment [11]:

∂ p
∂ t

=−c2ρ

G
· ∂Qn

∂x
,

∂ p
∂x

=−2 f ρ2c2Q2
n

DG2 p
, (1)

where p is the pressure in the pipeline, x is the position of
flow, c is the speed of sound in gas [m/s], ρ is the average gas
density over the cross-section area of the pipeline [kg/m3],
Qn is the volumetric flow at standard conditions, f is the
friction factor, D is the diameter of the pipeline and G =
π(D/2)2. While the partial differential equation (PDE) model
provides an accurate description of the gas flow dynamics
for infrequent online optimization, an ordinary differential
equation (ODE) model is sufficient to describe the pressure
dynamics at nodes [11]. The dynamical pressure model at
node i is given as

ṗi =
c2

Vi
∑

j∈N i

√∣∣p2
j − p2

i

∣∣
Ki j

sgn(p j − pi)−wi, (2)

where Ki j =
64 fi jc2∆xi j

π2D5
i j

, Vi =
π

8 ∑
j∈N i

D2
i j∆xi j, and wi is the

mass flow at pipeline i, ∆xi j denotes the length of pipeline
between node i and node j, N i denote the set of neighbor-
hood pipelines of the pipeline i. Let

ψ(pi, p j)≜

√∣∣p2
j − p2

i

∣∣
Ki j

sgn(p j − pi),

and

Ψ(p)≜


0 ψ(p1, p2) . . . ψ(p1, pn)

ψ(p2, p1) 0 . . . ψ(p2, pn)
...

...
. . .

...
ψ(pn, p1) ψ(pn, p2) . . . 0

 ,
then the model of the entire pipeline network is given by

ṗ = c2V−1 (A⊙Ψ(p))1−w
= c2V−1 (A⊙Ψ(p))1+Bsupwsup −Bdemwdem

≜ f (p,w),

(3)

where V−1 = diag([V−1
1 , V−1

2 , . . . ,V−1
n]), wsup is a vector

of mass inflows at the supply points and wdem is a vec-
tor of mass outflows at the demand points. Clearly w =
−Bsupwsup + Bdemwdem, where Bdem and Bsup are appro-
priately dimensioned matrices such that B⊤

supBdem = 0 and
P
[
−Bsup Bdem

]
= I for some projection matrix P. In

addition, a dynamical model of the compressor between two
nodes i and j is given by [12]:

ω̇i j =
1

J0i

(ui j +ρr2
2qi jωi j)

q̇i j =
Ac

Lc
(φ (ωi j,qi j) pi − p j)

ẇi j = qi j,

(4)

where

φ(ω,q) =

(
1+

1
Tincp1000

(
ρr2

2ω
2 + k f q2 − r2

1
2

(
ω − q

Acr1ρin

)2
)) γ

γ−1

,

ωi j is the compressor rotor angular velocity [rad/s], qi j
is the mass power flow [kg/s], φ(ω,q) is the compressor
characterization, ui j is the mechanical torque [N-m] applied
to the rotor shaft or inertia J0i [kg-m2]. pi and p j are the input
and output pressures of the compressor, respectively. For
the system considered, the compressors are at the extremes
of the network. Thus, at each compressor node, one of pi
and p j will be the ambient pressure. pi = Pamb for upstream
compressors, while p j = Pamb for downstream compressors.

B. Control Model

A supervised control framework is employed to stabilize
pipeline pressure and regulate mass flow, compromising a
supervised control layer and an automatic control layer. The
supervised control layer contains an estimator, a bad data
detector (BDD), and a supervised controller. The pipeline
system is equipped with hundreds of smart pressure and flow
meters, the goal of the estimator at the supervised control
layer is to fuse the meter readings and estimate the states of
interest p. The measurement model is given as

y = g(p,w). (5)

Then an unscented Kalman Filter (UKF) is utilized to per-
form sensor fusion and state estimation. Firstly, following
standard unscented transformation, we use 2n + 1 sigma
points to approximate the state p with assumed mean p̄ and
covariance Pp as follows:

χ0 = p, χi = p+(
√
(λ +n)Pp)i, i = 1, · · · ,n,

χi+n = p+(
√
(λ +n)Pp)i−n, i = n+1, · · · ,2n.

The corresponding weights for the sigma points are given as
W m

0 = λ/(n+ λ), W c
0 = W m

0 +(1−α2 + β), Wi = 1/2(L+
λ), and λ = α2(n + κ)− n represents how far the sigma
points are away from the state, κ ≥ 0,α ∈ (0,1], and β =
2 is the optimal choice for Gaussian distribution. Assume

pk−1 ∼ N (p̄k−1,Pp,k−1), the prediction step is given by

p̂−
k =

2n

∑
i=0

Wig(X k−1,wk), ŷ−k =
2n

∑
i=0

WiYk,i,

P̂p,k =
2n

∑
i=0

Wi(g(X k−1,wk)− x̂k)(g(X k−1,wk)− x̂k)
T +R,

where Yk = f (g(X k−1,wk)). The correction step is given by

p̂k = p̂−
k +Kk(yk,− ŷk,), Pp,k = P̂p,k −KkP̂y,kKT

k , (6)

where the Kalman gain is Kk = P̂pyP̂−1
y,k with

P̂y,k =
2n

∑
i=0

Wi(Yk,i − ŷk,)(Yk,i − ŷk,)
T +Q,

P̂py =
2n

∑
i=0

Wi(X ⋆
k,i − p̂k)(Y(k,i),− ŷk,)

T ,

and Q and R are the measurement and process noise co-
variance matrices respectively. Bad data detector (BDD) is
defined as a function D : Rn×Rp×Rm →R+ mapping from
the state estimates to a detection residual (i.e. 1-norm or
2-norm residual-based detectors [13], [14]) or a detection
likelihood (i.e. χ2 detector [15], [8]).

ri = D(p̂i,yi,wi). (7)

Linearizing the models (3) around the equilibrium point
(peq,weq) and discretizing with a fixed time step Ts yields

∆pk+1 = A∆pk +B∆wk, (8)

where ∆pk = pk −peq, ∆wk = wk −weq, and

A =
∂ f
∂p

∣∣∣∣
(peq,weq)

Ts + In, B =
∂ f
∂w

∣∣∣∣
(peq,weq)

Ts, C =
∂g
∂p

∣∣∣∣
peq

.

Then, a model predictive controller of horizon length h is
utilized to generate the reference mass flow wr:

Minimize
∆p[k,k+h],∆w[k,k+h]

:
h

∑
t=0

1
2

∆p⊤
t M1∆pt +

h−1

∑
t=0

1
2

∆w⊤
t M2∆wt

Subject to : ∆pt+1 = A∆pt +B∆wt , t = 0, · · · ,h−1
∆p0 = ∆pk, ∆ph = 0.

(9)
Thus, the reference mass flow is given as wr

k = ∆w⋆
[k]+weq.

Next, at the automatic control layer, a PID controller is used
to control the compressors to track the reference mass flow.

ui j = KP e(t)+KI

∫ t

0
e(τ)dτ +KD

de(t)
dt

, (10)

where e(t) = wi j − wr
i j, and the PID gains KP,KI ,KD are

designed to achieve lim
t→∞

∥e(t)∥= 0.

C. Attack Model

The attacks could be injected through the sensing process
and actuation process, and it can be modeled as [15], [14]

ṗ = f (p,w+ eu),

y = g(p,w)+ ey.
(11)

To characterize the effect of attacks in the system (11), ef-
fectiveness and stealthiness are two common criteria [3]. We
use l1 : Rm ×Rp → R, l2 : Rm ×Rp → R to denote functions
evaluating the effectiveness and stealthiness of the attacks
respectively. Then a feasible set of attacks S is defined with
given thresholds of effectiveness and stealthiness τE ,τS:

S =

{
eu ∈ Σku ,e

y ∈ Σky

∣∣∣∣l1(eu,ey)≥ τE , l2(eu,ey)≤ τS

}
. (12)

Most research uses the estimation error to represent the
effectiveness of sensor attacks such that l1 = ∥x̂i −xi∥ [13],
[14]. The stealthiness function often employs the BDD
function l2 = D, where D is defined in (7).

Consequently, the attack generation problem is finding a
generative model of the form

G(z,θ) : (Ω,F ,Pz)×Rng → Rn (13)

with a constant tunable parameter vector θ ∈Rng , and a prior
probability sample space (Ω,F ,Pz) with random variables
z ∼ Pz, such that

Pr{G(z,θ) ∈ S} ≥ α (14)

for some α ∈ (0,1). Essentially, G(z,θ) is a generative model
for the set S if G(z,θ) ∈ S with a high probability given by
the lower bound α .

However, obtaining the close-form expressions of l1 and
l2 is challenging due to their complex composition of the
models from (2) to (10). Moreover, searching for feasible
attacks in S is at least an NP-hard problem due to the
nonlinearity and nonconvexity of the problem. To address
these challenges, we proposed a data-driven approach that
consists of two discriminators learning l1 and l2 from runtime
data, and a generator learning how to solve this NP-hard
attack generation problem.

IV. MAIN RESULTS

In this section, we introduce a solution to search for
feasible attacks in the set S defined in (12) using only
the runtime data of NPS. The data-driven attack generation
framework is illustrated in Fig. 2. The runtime data is
obtained from the physical experiment and is used to guide
the training of the discriminators. The trained discriminators
then supervise the learning process of the generator.

A. Generator

The generator G(z,θ) is a deep neural network learning
the distribution of feasible attacks from sampling noise. It is
trained with the loss function

L(G(z;θ)) = ReLU
(

E
z∼Pz

[D(G(z;θ))]− (1−α)

)
. (15)

Fig. 2. Schematic description of the proposed vulnerability analysis model

where D function is given by

D(e) = exp[LeakyReLUs (τE − l1 (e))
+LeakyReLUs (l2 (e)− τS)],

(16)

where e =
[
eu⊤ ey⊤]⊤. Then the following minimization

program is employed to train the generator and solved by
gradient descent.

θ
⋆ = argmin

θ

E
z∼Pz

L(G(z;θ)) . (17)

B. Discriminators

Successful training of the generator requires knowledge
of l1 and l2 functions. However, it is hard to obtain their
closed-form expression. Data-driven approximation offers a
practical solution, as it only requires runtime data instead
of a high-fidelity model and provides easy calculation of
gradients. In this paper, we use two deep regression neural
networks to approximate l1 and l2:

aE = f1(e;θE), aS = f2(e;θS). (18)

They are both trained with the mean-square-error (MSE) loss
function given N runtime effectiveness metric data l1(e) with
the corresponding injection of attacks e:

Minimize:
θE

1
N

N

∑
j=1

∥∥∥l1(e)(j)− f1(e;θE)
(j)
∥∥∥2

2
, (19)

and given N runtime stealthiness metric data l2(e) with the
corresponding injection of attacks e:

Minimize:
θS

1
N

N

∑
j=1

∥∥∥l2(e)(j)− f2(e;θS)
(j)
∥∥∥2

2
, (20)

C. Training Algorithm

The generator maps random samples z ∼ Pz to the pa-
rameter vector I ∈ Rp of a pre-defined attack policy π(I).
Given I ∈ Rp, the attack policy π(I) is a deterministic time
sequence of the injected attacks given by

π(I)≜ {t0(I),T (I),g(I)}.

It comprises the start time of the attack injection t0(I), the
duration of the attack injection T (I), and the attack profile
g(I) : [t0(I) t0(I)+T (I)]→Rn. The specific attack policy is
assumed to be predetermined for the purpose of this paper.

Biased learning is a concern in deep generative models
[16], particularly when trained with multiple interrelated
data-driven models. The discriminators might learn biased l1
and l2 functions based on a limited space of attacks covered
by the generative model. This in turn affects the training
of the generator network. To tackle biased learning, this
paper incorporates random and generated attack datasets into
the discriminator training process. Algorithm 1 outlines the
complete training procedure.

Algorithm 1 Training of the attack generative model
Hyperparameters: τE , τS, α , π , s

1) Generate random parameter vector I, implement the
attack policy π(I) in system experiment and obtain a
random attack dataset {[I1, I2, I3], [aE ,aS]}rand ;

For i in Nepoch do:

2) Pass a batch of m samples {z(1),z(2), · · · ,z(m)} ∼ Pz
through the generator to obtain [I1, I2, I3] = G(z,θi−1);

3) Perform corresponding attack policy π(G(z,θi−1)) in
system experiment and obtain a generated attack
dataset {[I1, I2, I3], [aE ,aS]}gen;

4) Train discriminators using both random attack dataset
and the current generated attack dataset → (19), (20);

5) Train the generator using the trained discriminators
in the loss function (15), where l1(e) = f1(e,θEi) and
l2(e) = f2(e,θSi).

End For

V. SIMULATION

In this section, we evaluate the proposed attack generative
model on a 4-node pipeline system, as depicted in Fig. 3. The
objective is to regulate the node pressures at their correspond-
ing equilibrium point peq, while meeting the demanding mass
flow wdem at node 4 and subject to the flow supply wh1 and
wh2 at the two wellheads. To this end, the supervised MPC
controller (9) generates the reference mass flow w1 at node
1 using the UKF estimation (6) of the node pressure and
the mass flow in the other pipelines. Subsequently, the local
PID controller (10) controls the compressor to regulate the
pipeline flow supplied to the node 1.
The topology of the network is represented by the adjacent
matrix

A =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 . (21)

The pipeline model parameters are chosen as c = 330m/s,
D12 = 0.8m, D23 = 0.5m, D34 = 1.5m, ∆x12 = ∆x23 = ∆x34 =
10m, f12 = f23 = f34 = 0.0025. The compressor model pa-
rameters are chosen as J0 = 47.7465, ρr2

2 = 0.0951, Tincp =
13322.3, k f = 0.05, r1 = 20, Acr1ρin = 0.5834, γ = 1.2, and
Ac/rc = 0.0146.

Fig. 3. A 4-node pipeline network as the simulation platform

Fig. 4. Nominal control performance with disturbance injected between
100s and 120s (nominal controller has robustness against small disturbance)

In this simulation, we target the equilibrium point peq =[
199 194 54 50

]⊤, corresponding to the equilibrium
point of the mass flow weq =

[
−20 −5 −5 13

]⊤. Fig. 4
illustrates an example of the nominal control performance,
where a disturbance d = 0.1 is injected into pressure
measurements during [100s,120s]. The supervisory control
framework successfully regulates the node pressures back to
their desired equilibrium point. The UKF is used to estimate
4 node pressure p1 ∼ p4 and 3 mass flow wh1, wh2, wdem
from their noisy measurements. The BDD is then defined as

r = ∥y−g(x̂)∥2, (22)

where x̂=
[
p̂⊤ wh1 wh2 wdem

]⊤. This BDD residual r is
used for the stealthiness metric. And the effectiveness metric
is given by the control error

e = ∥p−peq∥2. (23)

The objective of the attack generation task is to fool UKF
into giving biased estimates x̂a leading to small r but big e.
The feasible attack set is given particularly as

S = {ey∣∣e ≥ 10,r ≤ 0.2}, (24)

where ey is injected through the measurements as shown in
(11). We used an example attack policy called ramp attack

Fig. 5. Testing performance of the attack generator in system simulation
at each training epoch (100 sampling test)

policy π(I) = {t0(I),T (I),g(I)} through each channel, given
by

t0 = tl +(tr − tl)I2,

T = Tl +(Tr −Tl)I3,

e = g(I) =

{
0 t < t0,

min
(
(t−t0)

T ,1
)

ēI1 t ≥ t0,

(25)

Here ē is the maximum magnitude of the attack signal. The
attack injection start time t0 ∈ [tl tr] and the duration time
T ∈ [Tl Tr]. We use ē = 0.5, tl = 20s, tr = 40s, Tl = 0s, Tr =
100s and the simulation time for generator training is set as
200s. These exact values of t0,T,e at runtime are specified
by the parameters I ∈ R3 generated by the generator.

Next, we implemented Algorithm 1 with τE = 10,τS =
0.2,α = 0.8,s = 0.01 and π given by (25). The generator
employed is a deep neural network composed of 4 layers,
ReLU , ReLU , Tanh, Sigmoid, with 500,1000,500,3n neu-
rons respectively, where n is the number of nodes under
attack. The input size is set as 10. The stealth net consists
of 3 ReLU hidden layers and Sigmoid output layer, and the
effect net consists of 3 ReLU hidden layers and Linear output
layer. The numbers of neurons at layers are 500,1000,500,1
for both effect net and stealth net. They are trained by
(20) and (19) respectively. Adams optimizer, in Matlab deep
learning toolbox, is used with the learning rate 0.0002,
gradient decay factor 0.5, and square gradient decay factor
0.999. We train the framework 5 epochs. In each epoch, the
generator is trained 10 batches of 5000 batch size, while the
discriminators are trained 200 batches of 1000 batch size.

After each epoch of training, the performance of the
attack generator is tested in a real system simulation, as
shown in Fig. 5. The generated attacks become more stealthy
(stealthiness metric value decrease) as the training epoch
increases, while their effectiveness is also sacrificed in the
first 2 epochs. However, once the stealthiness falls below
the threshold 0.2, the generator increases effectiveness from
epoch 3 to epoch 5. The F1 score of generating feasible
attacks in the set S defined in (24) is increasing from 0 to
0.86. The training loss curves of discriminators are shown
in Fig. 6. It is seen that, at the first 2 epochs, the training of
discriminators does not converge yet, so the performance of

the attack generator also has bigger deviations as shown in
Fig. 5. As the number of epochs increases, the convergence
of the generator and two discriminators arrive simultane-
ously.

Fig. 6. Loss curves of two discriminators at each training epoch

Fig. 7. An example control performance under the generated attacks from
the trained attack generator

Fig. 8. The corresponding BDD residual under the generated attacks

Finally, we demonstrate the effectiveness of the proposed
attack generation method through a time-series performance
of generated feasible attacks in Fig. 7. The attacks caused the
state estimator to output incorrect estimations of the pipeline
flow and current node pressures. Then the controllers were
driven to adjust the node pressures towards other malicious
equilibrium points. Despite this, the stealthiness value, shown
in Fig. 8, remained below the threshold, indicating that the
attacks were able to remain undetected.

VI. CONCLUSIONS

This paper introduces a data-driven attack generative
model for NPS vulnerability analysis. The framework con-
sists of three interactive data-driven models: two discrimina-
tive models to evaluate attack signals and a generative model
to generate feasible attacks. A new loss function is proposed
to ensure successful attack generation.

Our future work involves providing the theoretical proof of
the successful attack generation with the new loss function in
(15). The boundary pursuit phenomenon observed in Fig. 5
suggests a potential for interactive training between the
proposed attack generator and a supervised learning-based
attack detector, which would lead to a complete automatic
exploration of the vulnerability space and the development
of a perfect attack detector for the system.

REFERENCES

[1] A. Hobbs, “The colonial pipeline hack: Exposing vulnerabilities in us
cybersecurity,” in SAGE Business Cases. SAGE Publications: SAGE
Business Cases Originals, 2021.

[2] R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE
Security & Privacy, vol. 9, no. 3, pp. 49–51, 2011.

[3] F. Pasqualetti, F. Dörfler, and F. Bullo, “Attack detection and identi-
fication in cyber-physical systems,” IEEE transactions on automatic
control, vol. 58, no. 11, pp. 2715–2729, 2013.

[4] G. Chen, Y. Zhang, S. Gu, and W. Hu, “Resilient state estimation and
control of cyber-physical systems against false data injection attacks on
both actuator and sensors,” IEEE Transactions on Control of Network
Systems, vol. 9, no. 1, pp. 500–510, 2021.

[5] T. Sui, Y. Mo, D. Marelli, X. Sun, and M. Fu, “The vulnerability of
cyber-physical system under stealthy attacks,” IEEE Transactions on
Automatic Control, vol. 66, no. 2, pp. 637–650, 2020.

[6] X. Ren and Y. Mo, “Secure detection: Performance metric and
sensor deployment strategy,” IEEE Transactions on Signal Processing,
vol. 66, no. 17, pp. 4450–4460, 2018.

[7] M. H. Shahriar, A. A. Khalil, M. A. Rahman, M. H. Manshaei, and
D. Chen, “iattackgen: Generative synthesis of false data injection
attacks in cyber-physical systems,” in 2021 IEEE Conference on
Communications and Network Security (CNS). IEEE, 2021, pp. 200–
208.

[8] A. Khazraei, S. Hallyburton, Q. Gao, Y. Wang, and M. Pajic,
“Learning-based vulnerability analysis of cyber-physical systems,” in
2022 ACM/IEEE 13th International Conference on Cyber-Physical
Systems (ICCPS). IEEE, 2022, pp. 259–269.

[9] A. N. Kolmogorov and A. T. Bharucha-Reid, Foundations of the theory
of probability: Second English Edition. Courier Dover Publications,
2018.

[10] C. Godsil and G. F. Royle, Algebraic graph theory. Springer Science
& Business Media, 2001, vol. 207.

[11] A. Osiadacz, Simulation and analysis of gas networks. Gulf Publish-
ing Company, Houston, TX, 1987.

[12] H. Perez-Blanco and T. B. Henricks, “A gas turbine dynamic model
for simulation and control,” in Turbo Expo: Power for Land, Sea, and
Air, vol. 78637. American Society of Mechanical Engineers, 1998,
p. V002T03A002.

[13] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks
against state estimation in electric power grids,” ACM Transactions
on Information and System Security (TISSEC), vol. 14, no. 1, pp. 1–
33, 2011.

[14] Y. Zheng and O. M. Anubi, “Resilient observer design for cyber-
physical systems with data-driven measurement pruning,” in Security
and Resilience in Cyber-Physical Systems. Switzerland: Springer,
2022, pp. 85–117.

[15] Y. Mo and B. Sinopoli, “False data injection attacks in control
systems,” in Preprints of the 1st workshop on Secure Control Systems,
vol. 1, 2010.

[16] S. Zhao, H. Ren, A. Yuan, J. Song, N. Goodman, and S. Ermon, “Bias
and generalization in deep generative models: An empirical study,”
Advances in Neural Information Processing Systems, vol. 31, 2018.

