
Available online at www.sciencedirect.com

Journal of the Franklin Institute 352 (2015) 2152–2170
http://dx.doi.o
0016-0032/Pu

nCorrespon
E-mail ad
www.elsevier.com/locate/jfranklin
Energy-regenerative model predictive control

Olugbenga Moses Anubin, Layne Clemen

UC Davis – Department of Mechanical and Aeronautical Engineering, Davis, CA 95618, United States

Received 1 August 2014; received in revised form 9 February 2015; accepted 26 February 2015
Available online 11 March 2015
Abstract

This paper presents some solution approaches to the problem of optimal energy-regenerative model
predictive control for linear systems subject to stability and/or dissipativity constraints, as well as hard
constraints on the state and control vectors. The problem is generally non-convex in the objective and some
of the constraints, thereby resulting in a non-convex optimization problem to be solved at each time step.
Multiple extended convex relaxation approaches are considered. As a result, a more conservative semi-
definite programming problem is proposed to be solved at each time step. The feasibility and stability of the
resulting closed-loop system are also examined. The approaches are validated using a numerical example of
maximizing energy regeneration from a single degree of freedom vibrating system subject to a level-set
constraint on some performance metric characterizing the quality of vibration isolation achieved by the
system. The constraint is described in terms of an upper bound on the L2�gain of the system from the input
to a vector of appropriately selected system outputs.
Published by Elsevier Ltd. on behalf of The Franklin Institute.
1. Introduction

The development of energy-regenerative engineering systems is on the rise due to the ever-
increasing awareness of limited resources and the need to recuperate energy that would otherwise be
wasted system operation. Many human activities involve converting energy from one domain to
another. For example, the conversion of mechanical energy to electrical energy, which can then
power computers, light, motors, etc. The input energy propels the work and is mostly converted to
heat or follows the product in the process as output energy. Energy recovery systems harvest the
output power and provide it as input power to the same or another process [1]. Examples of such
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systems include using heated water from sources like steel mills as heating for homes, regenerative
braking, energy harvesting from vibrating systems, heat regenerative engines, etc.

The approaches used in the control systems of energy-regenerative systems can be seen from
two perspectives: direct and indirect methods. Indirect methods utilize control systems for some
primary objective and as a result extracts energy from the system. An example is a vibrating
system. Any controller results in the closed-loop system being dissipative which makes the
energy available for regeneration [2–4]. On the other hand, direct methods seek to directly extract
energy from the system while satisfying some performance constraint. Examples of direct
methods include a sliding mode control with an appropriate choice of the sliding surface [5] and
model predictive control [6].

Model predictive control (MPC) refers to a class of control systems in which the current
control action is obtained at each sampling instant by solving a finite (or infinite) horizon open-
loop optimal control problem. While the result of the optimization is a sequence of control
actions over the prediction horizon, only the first control action is applied at the current time.1

The process is repeated at each sampling time to obtain the desired control input. Using this
framework, it is easy to cope with hard constraints on controls and states. As a result, MPC has
received a lot of attention in the literature for both discrete and continuous time systems [8–17].

Consequently, MPC-based solutions for energy regeneration problems are receiving a lot of
research attention. Interested readers are directed to the reference [18] and the references therein for
a survey of prior works in this area. Moreover, it was reported in [19] that it is troublesome to
ensure stability if the problem is nonconvex, and in addition, the explicit methods are not suitable
for larger problems due to extremely large state-space models. In this paper, the stability issue is
tackled by explicitly imposing stability/dissipativity constraints which are then convexified by
introducing some extended convex relaxation approaches. More concretely, this paper considers
the problem of optimal energy-regenerative MPC for linear systems subject to stability/dissipativity
constraints, as well as hard constraints on the state and control vectors. The problem is generally
non-convex in the objective and some of the constraints, thereby resulting in a non-convex
optimization problem to be solved at each time step. Some convex relaxation approaches are
considered. As a result, a more conservative semi-definite programming problem is proposed to be
solved at each time step. The feasibility and stability of the resulting closed-loop system are also
examined. The approaches are validated using a numerical example of maximizing the power
regenerated from a single degree of freedom vibrating system subject to a level-set constraint on
some weighted performance metric. The constraint is described in terms of an upper bound on the
L2-gain of the system from the input to a vector of appropriately selected system outputs.

The rest of the paper is organized as follows: notations used throughout the paper are
introduced in Section 2. The problem formulation is given in Section 3. The convex relaxation
procedures are described in Section 4 with the feasibility and stability of the resulting relaxed
MPC problem. In Section 5, the relaxed MPC problem is extended to the output feedback case. A
numerical simulation example is given in Section 6. Conclusions follow in Section 7.

2. Notations

Throughout the paper, the following notations are used: R and Rþ denote the set of real
numbers and positive real numbers respectively. The set of all symmetric positive definite and
positive semi-definite matrices are denoted by Sþþ and Sþ respectively. The Euclidean norm of
1Except otherwise required in some special circumstances (for example, see reference [7] and references therein).
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a vector xARn is denoted by JxJ9 xTx
� �1=2

. The quadratic form JxJ2P9xTPx is defined for
any matrix PASþ. The expression P⪯Q means that the matrix Q�PASþ. The Euclidean balls
Brð0Þ and Brðx0Þ are defined respectively for some rARþ as Brð0Þ9fx : JxJrrg and
Brðx0Þ9fx : Jx�x0 Jrrg.
3. Problem formulation

Using the MPC framework, the problem considered is to solve the optimization problem
defined below at each time step:

minimize J ¼
XN
k ¼ 0

xTk C
Tuk ð1Þ

subject to : xkþ1 ¼ Axk þ Buk; x0 ¼ xðtÞ; ð2Þ

Juk Jru; ð3Þ

stability=dissipativity constraint; ð4Þ
where AARn�n, BARn�m1 are the system state and input matrices respectively,
xk9xðt þ TskjtÞARn, uk9uðt þ TskjtÞ, k¼ 0; 1;…N are the predicted future states and
control sequences respectively, u40 is a given saturation requirement on the control, and N
defines the prediction horizon.
The objective function in Eq. (1) is indefinite. As a result, the value function of the above

optimization cannot be used as a Lyapunov function for the closed loop system, as is the case
with traditional model predictive control design. In order to ensure the stability of the ensuing
closed loop system, an explicit constraint is enforced in Eq. (4) either as a pure stability
constraint in the Lyapunov sense or as a “harder” dissipativity constraint. The stability constraint
in Eq. (4) is expressed as a Lyapunov stability criterion as follows; there exists V :
Rn-Rþ;Vð0Þ ¼ 0 such that

Vðxððiþ 1ÞTsÞÞ�VðxðiTsÞÞr0; 8 i¼ 0; 1;… : ð5Þ
For the sake of this paper, the Lyapunov candidate function considered is a family of quadratics
VðxÞ ¼ JxJ2P parametrized by PASþþ. On the other hand, the dissipativity constraint in Eq. (4) is
expressed as a level set constraint on the L2�gain of the system from an exogenous input to a
controlled output vector. To facilitate subsequent developments, the following definitions concerning
the L2�norm of a signal and the induced L2�norm of a mapping over extended L2 space are given.

Definition (Extended L2�space). Let

χMðiTsÞ ¼
χðiTsÞ; io¼M

0; i4M;

(
ð6Þ

MAN be a truncation of the signal χðiTsÞAL2, the extended L2-space is defined as

L2eðMÞ ¼ χðiTsÞjχMðiTsÞAL2;MAN
� �

; ð7Þ
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with the associated L2�norm

Jχ J2eðMÞ ¼
X1
i ¼ 0

Jχ
M
ðiTsÞJ2

( )1=2

¼
XM
i ¼ 0

JχðiTsÞJ2
( )1=2

: ð8Þ

For the sake of clarity of exposition, the subscript e(M) is dropped and we simply use Jχ J2 to
denote the L2�norm of a signal over the extended L2�space for any given MAN.

Definition (L2�gain). Consider the LTI system with an exogenous input wðiTsÞARm
2 , and a

controlled output ykARr

G :
xððiþ 1ÞTsÞ ¼ AxðiTsÞ þ BuðiTsÞ þ BwwðiTsÞ
yðiTsÞ ¼ CyxðiTsÞ þ DuðiTsÞ;

(
ð9Þ

the L2�gain is defined as

JGJ2 ¼ sup
JwðiTsÞ J 2 a0

JyðiTsÞJ2
JwðiTsÞJ2

: ð10Þ

Remark. It is well known [20,21] that if there exists γZ0 and V : Rn-Rþ, Vð0Þ ¼ 0 such that

Vðxððiþ 1ÞTsÞÞ�VðxðiTsÞÞrγ2 JwðiTsÞJ2� JyðiTsÞJ2; 8 i¼ 0; 1;…; ð11Þ
then, the L2�gain of the system from wðiTsÞ to yðiTsÞ can be upper bounded2 by γ.

It is interesting to note that, with wðiTsÞ ¼ 0, the dissipativity condition in Eq. (11) is sufficient
for the stability condition in Eq. (5). Thus, without loss of generality, only the condition in Eq.
(11) will be considered for the constraint in Eq. (4). For the sake of clarity of exposition in the
subsequent developments, except otherwise stated, the notation χðiTsÞ ¼ χðiÞ will be adopted. To
this end, let

VðxÞ ¼ JxJ2P; PASþþ; ð12Þ
thus, the inequality in Eq. (11) becomes

Jxðiþ 1ÞJ2P� JxðiÞJ2P�γ2 JwðiÞJ2 þ JyðiÞJ2r0; ð13Þ
which implies that

zT
�γ2Iþ BT

wPBw BT
wP AxðiÞ þ BuðiÞð Þ

AxðiÞ þ BuðiÞð ÞTPBw JAxðiÞ þ BuðiÞJ2P� JxðiÞJ2P þ JyðiÞJ2
" #

zr0; ð14Þ

where

z¼ wðiÞ 1½ �T : ð15Þ
Using the Schur Complement, the above inequality yields the following sufficient conditions:

�γ2Iþ BT
wPBw$0; ð16Þ

JAxðiÞ þ BuðiÞJ 2Q þ JyðiÞJ 2� JxðiÞJ2Pr0; ð17Þ
where
2For linear systems, this condition (with a quadratic Lyapunov function VðxÞ ¼ xTPx) is both necessary and sufficient
and popularly known as bounded-real lemma.
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Q¼ Pþ PBw γ2I�BT
wPBw

� ��1
BT
wP: ð18Þ

Thus, the MPC problem in Eqs. (1) through (4) is re-written as

minimize J ¼
XN
k ¼ 0

xTk C
Tuk ð19Þ

subject to : xkþ1�Axk�BukABrð0Þ; x0 ¼ xðtÞ; ð20Þ

Juk Jru; ð21Þ

JAxk þ Buk J2Q þ Jyk J2� Jxk J2Pr0: ð22Þ
Since it is impossible, without any form of preview, to ascertain its future values, the exogenous input
is not included in the predictive model in the above MPC but instead, the mismatch between the
predicted and controlled step is restricted to live within an Euclidean ball Brð0Þ of radius rZ0
centered around the origin. Also, by including the dissipativity constraint in Eq. (22), it is guaranteed
that the controlled output signal can be upper bounded by some scalar multiple of the exogenous
input according to the specified attenuation level γ. It is also noteworthy that, under the traditional
MPC framework where only the first of the input sequence from the optimization procedure is
applied to the plant, the dissipativity constraint only needs to be enforced for k¼0. As a result, the
constraint becomes convex—since the only unknown in Eq. (22) is u0 in this case. Nevertheless, in
some scenarios, it might be helpful to enforce the constraint for the entire (or some part of the)
prediction horizon. An example of such scenario is when there is limited processing power such that
it takes more than one sampling period to solve the optimization problem [7,22]. Consequently, the
dissipativity constraint will be enforced for the entire prediction horizon. The following section
considers some convexification approaches for the nonconvex optimization above.
4. Convex relaxation approaches

The optimization problem described by Eqs. (19) through (22) is nonconvex due to the
nonconvex objective function and the constraint in Eq. (22). Unfortunately, nonconvex
optimization problems have been shown to be NP-hard3 [23,24]. Several attempts have been
made to relax nonconvex optimization problems into a more tractable convex optimization
problem [25–31]. In this section, relaxation methods based on convex–concave decomposition are
considered. Moreover, the constraint in Eq. (22) is replaced with a more conservative contractive
constraint by requiring that the state shrinks in norm. Interested readers are directed to the
references [32,33] and the references therein for a complete exposition of contractive model
predictive control.
4.1. Objective function

The first convexification of the objective function is obtained by linearizing about ðx0;u�1Þ,
where u�1 is the applied control from the last optimization run. It is taken as zero when the
3NP-hard (Non-deterministic Polynomial-time hard), in computational complexity theory, is a class of problems that
are, informally, “at least as hard as the hardest problems in NP”.



O.M. Anubi, L. Clemen / Journal of the Franklin Institute 352 (2015) 2152–2170 2157
system is just starting from rest. Thus, the following objective function is defined:

J1 ¼
XN
k ¼ 0

xT0C
T ðuk�u�1Þ þ ðxk�x0ÞTCTu�1 ð23Þ

As an alternative convexification, the objective function is first decomposed into a difference of
convex functions, viz:

J ¼ 1
4

XN
k ¼ 0

JCxk þ uk J2� JCxk�uk J2: ð24Þ

Next, JCxk�uk J2 is linearized about ðx0;u�1Þ resulting in the following convex objective
function:

J2 ¼
1
4

XN
k ¼ 0

JCxk þ uk J2�2 Cx0�u�1ð ÞT C xk�x0ð Þ� uk�u�1ð Þð Þ: ð25Þ

This convexification works because the linearization of � JCxk�uk J2 is a global upper bound
of the concave function, making J2ZJ. Therefore, minimizing J2 will always guarantee upper
bound of the minimum of J. Next, we look at the convex relaxations for the constraint in
Eq. (22). Moreover, it is important to point out that the occurrence of singular arcs4 is not
inevitable with the affine objective J1. See Section 5.6 of [34], or Chapter 8 of [35] and
references therein for a description of singular arcs in optimal control problems. An obvious
example is when x0ANullðCÞ;u�1ANullðCT Þ. When this happens, the optimization problem
becomes degenerative in that the objective is zero over the entire search space. The quadratic
objective J2, however, is well conditioned for all values of the “parameters” x0;u�1 but is more
conservative due to the quadratic term forcing the term JCxk þ uk J to be as small as possible.
Therefore, in order to avoid singular arcs while reducing conservatism, the following objective is
used:

J ¼ J1 þ 1ϕðx0; u�1ÞJ2; ð26Þ
where 1ϕð�; �Þ is an indicator function of the singular arc condition for the objective function J1,
and is given by

1ϕðx0;u�1Þ ¼
1 if ½uT�1 xT0 �TANull blkdiagðCT ;CÞ� �
0 otherwise:

(
ð27Þ
4.2. Stability/dissipativity constraint

First, we verify the feasibility of the constraints in Eqs. (21) and (22) by considering the
feedback law uk ¼ Kxk . To this effect, Eq. (22) is written as

xk Aþ BKð ÞTQ Aþ BKð Þ�Pþ Cy þ DK
� �T

Cy þ DK
� �� �

xkr0; ð28Þ
4Singular arc is used here to describe the indecision that arises due to the vanishing of the objective function over the
entire search space. In general, singular arc condition refers to the situation when direct application of Pontryagin's
minimum principle fails to yield a complete solution. This is usually the case when the Hamiltonian depends linearly on
the control.
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which implies that

ðAþ BKÞT Pþ PBw γ2I�BT
wPBw

� ��1
BT
wP

� �
Aþ BKð Þ

�Pþ Cy þ DK
� �T

Cy þ DK
� �

⪯0: ð29Þ
Using the matrix inversion lemma

Pþ PBw γ2I�BT
wPBw

� ��1
BT
wP¼ P�1�γ�2BwB

T
w

� ��1
; ð30Þ

the matrix inequality above becomes

ðAþ BKÞT P�1�γ�2BwB
T
w

� ��1ðAþ BKÞ
�Pþ Cy þ DK

� �T
Cy þ DK
� �

⪯0; ð31Þ
which, after using the Schur complement, is equivalent to

�Pþ Cy þ DK
� �T

Cy þ DK
� � ðAþ BKÞT

ðAþ BKÞT �P�1 þ γ�2BwBT
w

" #
⪯0: ð32Þ

Pre- and post-multiplying by P� 1

0
0
I

h i
yields an equivalent LMI

�P�1 ðAP�1 þ BLÞT ðCyP�1 þ DLÞT
ðAP�1 þ BLÞ �P�1 þ γ�2BwBT

w 0

ðCyP�1 þ DLÞ 0 �I

2
64

3
75⪯0; ð33Þ

where

L¼KP�1: ð34Þ
It is clear that the feasibility of the above LMI is sufficient for ensuring the feasibility of the
dissipativity constraint in Eq. (22). Now, we consider the input constraint in Eq. (21). Define the
ellipsoid ¼ xjxTPxr1

� �
. It follows from Eq. (22) that Jxkþ1 J2Pr Jxkþ1 J2Qr Jxk J2P.

Thus x0A ) xkA 8k40, meaning that is an invariant set for the system. Consequently,
Eq. (22), together with Jx0 J2Pr1, implies that Jxk J2Pr1 8k40.
Therefore,

Juk J2 ¼ JKxk J2 ¼ JLPxk J2 ð35Þ

Juk J2r JLP1=2 J2 JP1=2xk J2 ð36Þ

Juk J2r JLP1=2 J2: ð37Þ
Thus, in addition to Eq. (22) and Jx0 J2Pr1, the inequality

LPLTru2; ð38Þ
implies that the inequality in Eq. (21) is satisfied with the feedback control uk ¼Kxk . The above
inequalities are equivalent to the LMIs

�1 xT0
x0 �P�1

" #
⪯0;

�u2I L

LT �P�1

" #
⪯0: ð39Þ

Therefore a sufficient condition for checking the feasibility of the constraints in Eqs. (21) and
(22) is to find P¼ PT≽0 and L that satisfies the LMIs in Eqs. (33) and (39). If the LMIs are not
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feasible, then one of four things might be the issue; the pair (A,B) is not controllable, the
attenuation level γ is too small, the control saturation bound u is too small, the constraints cannot
be met by a state feedback control.

Next, the following definition introduces the notion of extended relaxation used in this paper.

Definition. A relaxation of the minimization problem

z9min cðxÞjxAXDRn
� �

is another minimization problem of the form

zR9min cRðx; yÞjxAXRDRn; yAYDRm
� �

with the properties
1.
 XDXR
2.
 cRðx; 0ÞrcðxÞ for all xAX
In light of the definition above, and using the property of the convexity of the norm function
J � J2P for all x0ARn

Jxk J2PZ Jx0 J2P þ 2xT0P xk�x0ð Þ
¼ � Jx0 J2P þ 2xT0Pxk; ð40Þ

the following convex relaxation of the constraint in Eq. (22) are considered:

C1 : JAxk þ Buk J2Q þ Jyk J2 þ Jx0 J2P�2xT0Pxkrβk ; ð41Þ

C2 : xTk Mxk þ Jx0 J2P�2xT0Pxkrβk; ð42Þ
where

M ¼ ðAþ BKÞTQðAþ BKÞ þ Cy þ DK
� �T

Cy þ DK
� �

; ð43Þ
and βk is chosen to be as small as possible by including it in the objective function as follows:

J ¼ J1 þ 1ϕðx0; u�1ÞJ2 þ λ
XN
k ¼ 0

βk; ð44Þ

with λ40 a parameter controlling the trade-off of the tightness of the relaxation with respect to
the net energy regenerated. The bigger the value of λ, the smaller the resulting net energy
regenerated. This is because the constraints become tighter and the resulting control expends
more energy enforcing them.

Next, we show that the feasibility of the LMI in Eq. (33) is sufficient to guarantee the
feasibility of the constraints C1 and C2 with βk ¼ 0. Thus, for sufficiently large λ, the solution of
the relaxation will converge to a feasible point of the original problem.

Theorem 4.1. If the LMI in Eq. (33) is feasible, then

xTk Mxk þ Jx0 J2P�2xT0Pxkr0; ð45Þ
for all x0ARn.
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Proof. The LMI in Eq. (33) is equivalent to

M�P⪯0: ð46Þ
From Eq. (45), it follows that

Jxk�M�1Px0 J2M�xT0 PM�1P�P
� �

x0r0; ð47Þ
from which it is clear that Eq. (45) is satisfied if and only if

PM�1P�P≽0: ð48Þ
Moreover, it follows from M�1=2P�M1=2

� �T
M�1=2P�M1=2
� �

≽0 that

PM�1P�P≽P�M: ð49Þ
Therefore Eq. (45) is a sufficient condition for Eq. (48), thus completing the proof. □

Remark. It is straightforward to see that the feasibility of C2 is sufficient for the feasibility of
C1, since there exists at least one uk ð ¼KxkÞ such that C1 is feasible.

Remark. Furthermore, heuristic extensions of C1 and C2, respectively, are obtained by
neglecting the affine terms and requiring that the quadratic terms be small as possible with
respect to the weighted objective:

C3 : JAxk þ Buk J2Q þ Jyk J2rβk ; ð50Þ

C4 : xTk Mxkrβk: ð51Þ
Remark. The slack variable βk included in Ci, i¼ 1; 2; 3; 4, can help with possible numerical
instability.

Remark. The relaxed constraints Ci, i¼ 1; 2; 3; 4, restrict the states of the system to live within
a bounded region whose determined by βk, which is in turn required to be as small as possible in
the resulting optimization problem. Thus, provided that the feasibility of the constraints is
guaranteed, the resulting closed-loop system is provably stable.
Finally, the relaxed MPC problem is expressed as

minimize J ¼ J1 þ 1ϕðx0; u�1ÞJ2 þ λ
XN
k ¼ 0

βk ð52Þ

subject to : xkþ1 ¼ Axk þ Buk; x0 ¼ xðtÞ; ð53Þ
Juk Jru; ð54Þ
either C1 or C2 or C3 or C4 ð55Þ

5. Output-feedback consideration

Here, the formulations in the previous section are extended to the cases where not all the states
are directly measurable with the aid of sensors but need to be estimated. The system model is
then given in a more general form as

G :

xðiþ 1Þ ¼ AxðiÞ þ BuðiÞ þ BwwðiÞ
yðiÞ ¼ CyxðiÞ þ DuðiÞ
ymðiÞ ¼ CmxðiÞ;

8><
>: ð56Þ
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where ymðiÞ denotes the vector of measured signals. Let x̂ðiÞ be the output of an observer designed
to estimate the state xðiÞ from the measurement ymðiÞ. While the design of a robust observer is not a
goal of this paper, it is however required that the state estimation error satisfies the following:

eðiÞ9xðiÞ� x̂ðiÞABrð0Þ; ð57Þ
for some rARþ. The topic of the design of such observer is well studied in the literature [36–39].
Also, let

P ¼ Co x̂01 ; x̂02 ;…; x̂0n
� � ð58Þ

be the smallest invariant polytope of the estimation error. See references [40,41] and references
therein on how to compute such polytope. Here, CoðV1;V2;…VLÞ refers to the convex hull whose
vertices are given by Vj, j¼ 1; 2;…L. Thus, the state of the system at time t ¼ iTs can be
expressed as the following convex combination:

xðiÞ ¼
Xn
j ¼ 1

θj x̂ðiÞ þ x̂0j
� �

9
Xn
j ¼ 1

θjx̂jðiÞ ð59Þ

for some θjARþ satisfyingXn
j ¼ 1

θj ¼ 1: ð60Þ

Let

X¼ xT0 ; xT1 ; …; xTNþ1

� 	T
; ð61Þ

U¼ uT0 ; uT1 ; …; uTN
� 	T

; ð62Þ

β¼ β0; β1; …; βN
� 	T

; ð63Þ
and the convex set ΠðχÞ defined as

ΠðχÞ ¼ X;U; βð Þ :

x0 ¼ χ;

xkþ1 ¼ Axk þ Buk ;

Juk Jru;

either C1 or C2 or C3 or C4

0
BBB@

1
CCCA

N

k ¼ 0

8>>>><
>>>>:

9>>>>=
>>>>;
: ð64Þ

Then, the relaxed MPC problem can be expressed as

minimize JðX;U; βÞ ¼ J1 þ 1ϕðx0; u�1ÞJ2 þ λ
XN
k ¼ 0

βk ð65Þ

subject to : X;U; βð ÞAΠðxðtÞÞ: ð66Þ

Lemma 5.1. If JAxj þ BuJ2Qrβ, 8 j¼ 1;…n and some QASþ, then JA
Pn

j ¼ 1 θjxj þ
BuJ2Qrβ for all θARn

þ9 ½θ1; θ2;…; θn��T ,
Pn

j ¼ 1 θj ¼ 1.
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Proof. It is straightforward to verify that

A
Xn
j ¼ 1

θixj þ Bu¼
Xn
j ¼ 1

θi Axj þ Bu
� �

: ð67Þ

Thus, using the Triangle Inequality, it follows that


AXn
j ¼ 1

θjxj þ Bu



2
Q
r
Xn
j ¼ 1

θj JAxj þ BuJ 2Q ð68Þ




AXn
j ¼ 1

θjxj þ Bu



2
Q
r
Xn
j ¼ 1

θjβ¼ β: □ ð69Þ

Corollary 5.2. If
Pn

j ¼ 1 JAxj þ BuJ2Qrβ, for some QASþ, then JA
Pn

j ¼ 1 θjxj þ BuJ 2Qrβ
for all θARn

þ9 ½θ1; θ2;…; θn�T ,
Pn

j ¼ 1 θj ¼ 1.

Proof. The results follow from the result of Lemma 5.1 by noting that
Pn

j ¼ 1 JAxj þ BuJ 2Qrβ
implies that JAxj þ BuJ 2Qrβ, 8 j¼ 1;…n. □

The following theorem demonstrates how robustness to state estimation error can be achieved by
enforcing the constraints in Eq. (66) at the vertices of the observer invariant-polytope.

Theorem 5.3. Given a sequence xj; j¼ 1;…; n, if there exist corresponding Xj, and U such that

Xj;U; β
� �

AΠ xj
� �

; j¼ 1;…; n; ð70Þ
then, there exists XðθÞ such that

XðθÞ;U; βð ÞAΠ
Xn
j ¼ 1

θjxj

 !
ð71Þ

for all θARn
þ9 ½θ1; θ2;…; θn�T satisfyingXn

j ¼ 1

θj ¼ 1: ð72Þ

Proof. Using the prediction model, it straightforward to verify that

XðθÞ ¼
Xn
j ¼ 1

θjxj

 !T

A
Xn
j ¼ 1

θjxj þ Bu0

 !T

…

"

ANþ1
Xn
j ¼ 1

θjxj þ
XN
j ¼ 0

AN� jBuj

 !T#T
: ð73Þ

Thus, if Eq. (70) holds, using Lemma 5.1, it follows that Eq. (71) holds. To see this, it is
sufficient to show that the constraints C1;C2;C3 and C4 are satisfied for xkðθÞ;U; βð Þ, where

xkðθÞ ¼ Ak
Xn
j ¼ 1

θjxj þ
Xk�1

j ¼ 0

Ak�1� jBuj: ð74Þ
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The conclusion follows by noting that

JAxkðθÞ þ Buk J2Q ¼



Akþ1

Xn
j ¼ 1

θjxj þ
Xk
j ¼ 0

Ak� jBuj



2
Q

ð75Þ

JykðθÞJ2 ¼



CyA

k
Xn
j ¼ 1

θjxj þ
Xk�1

j ¼ 0

Ak�1� jBuj þ Duk



2 ð76Þ

JxKðθÞJ2M ¼



Ak

Xn
j ¼ 1

θjxj þ
Xk�1

j ¼ 0

Ak�1� jBuj



2
M

ð77Þ

and using Lemma 5.1. □

Remark. Theorem 5.3 shows that by requiring the solution of the relaxed MPC to be feasible at
the vertices of the polytope P translated by observed state x̂ðtÞ, the resulting closed-loop system
is robustly feasible with respect to the state estimation error. To this effect, the output-feedback
relaxed MPC problem is given by

MPC1

minimize J
1
n

Xn
j ¼ 1

Xj;U; β

 !

subject to : Xj;U; β
� �

AΠðx̂ðtÞ þ x̂0j Þ; j¼ 1;…; n:

8>><
>>: ð78Þ

While the MPC problem MPC1 allows for robustness with respect to the state estimation
error, the number of constraints was increased by a factor of n. Fortunately, using Corollary 5.2,
the total number of constraint to ensure robustness to state estimation error can be reduced to
nN�1. The following theorem demonstrates how robustness to state estimation error can be
achieved by using a single dissipativity constraint. First, we introduce new constraints based on
Ci, i¼ 1; 2; 3; 4, as follows:X

C1 :
Xn
j ¼ 1

JAxk;j þ Buk J2Q þ Jyk;j J
2 þ Jx0 J2P�2xT0Pxk;j

� �
rβk; ð79Þ

X
C2 :

Xn
j ¼ 1

xTk;jMxk;j þ Jx0 J2P�2xT0Pxk;j
� �

rβk; ð80Þ

X
C3 :

Xn
j ¼ 1

JAxk;j þ Buk J2Q þ Jyk;j J
2

� �
rβk; ð81Þ

X
C4 :

Xn
j ¼ 1

xTk;jMxk;j
� �

rβk; ð82Þ

where xk;j is the kth step prediction starting from the initial state x̂ðtÞ þ x̂0j , and
yk;j ¼Cyxk;j þ Duk. Note that the control is not indexed by j. This is because a unique control
is required, as in Theorem 5.3, to ensure feasibility over the polytope P. Consequently, the
convex set

P
ΠðχÞ is defined as
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X
ΠðχÞ ¼ X1;…;Xn;U; βð Þ :

x0 ¼ χ þ x̂0j ; j¼ 1;…n;

xkþ1;j ¼ Axk;j þ Buk ; j¼ 1;…n;

Juk Jru;

either
P

C1 or
P

C2 or
P

C3 or
P

C4

0
BBBB@

1
CCCCA

N

k ¼ 0

8>>>><
>>>>:

9>>>>=
>>>>;
;

ð83Þ
where

Xj ¼ xT0;j; xT1;j; …; xTNþ1;j

h iT
ð84Þ

U¼ uT0 ; uT1 ; …; uTN
� 	T

; ð85Þ

β¼ β0; β1; …; βN
� 	T

: ð86Þ

Theorem 5.4. If
P

ΠðχÞ is feasible for some χARn, then Πðχ þPn
j ¼ 1 θjx̂0jÞ is feasible for all

θARn
þ9 ½θ1; θ2;…; θn�T satisfyingXn
j ¼ 1

θj ¼ 1: ð87Þ

Proof. Suppose
P

ΠðχÞ is feasible, and that X1;…;Xn;U; βð ÞAPΠðχÞ for some χARn.
Given any θ satisfying Eq. (87), let

xkðθÞ ¼ Ak
Xn
j ¼ 1

θjx0;j þ
Xk�1

j ¼ 0

Ak�1� jBuj: ð88Þ

It follows that

xkþ1ðθÞ ¼ Akþ1
Xn
j ¼ 1

θjx0;j þ
Xk
j ¼ 0

Ak� jBuj

¼ A Ak
Xn
j ¼ 1

θjx0;j þ
Xk�1

j ¼ 0

Ak�1� jBuj

 !
þ Buk

¼ AxkðθÞ þ Buk: ð89Þ
Moreover, it is clear that Juk Jru, 8k¼ 0;…N. Also, using Corollary 5.2, it follows that the
feasibility of

P
Ci implies the feasibility of Ci, i¼ 1; 2; 3; 4. Therefore, xkðθÞ;U; βð ÞA

Πðχ þPn
j ¼ 1 θjx̂0j Þ. □

Remark. In the light of Theorem 5.4, the output-feedback relaxed MPC problem is given by

MPC2

minimize J
1
n

Xn
j ¼ 1

Xj;U; β

 !

subject to : Xj;U; β
� �

A
P

Πðx̂ðtÞÞ; j¼ 1;…; n:

8>><
>>: ð90Þ



Fig. 1. Single degree-of-freedom vibrating system.
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6. Numerical simulation example

In order to validate and compare the approaches presented in the previous sections, a problem
of maximizing energy regeneration from a single degree-of-freedom system, subject to a level-set
constraint on some performance metric, is considered. The system considered is shown
schematically in Fig. 1 and the equations of motion are given by

_v

_x

� �
¼ � b

m
k
m

�1 0

" #
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Am

v

x

� �
þ

1
m

0

" #
|ffl{zffl}
Bm

uþ
b
m

1

" #
|ffl{zffl}
Bmw

w; ð91Þ

where wðtÞ and uðtÞ are the exogenous and controlled input respectively. The measured output is
given as

ymeas ¼ 1 0½ �|ffl{zffl}
Cm

v

x

� �
: ð92Þ

The system is discretized using a zero-order-hold for a sampling period of Ts. As a result, the
dynamics in Eq. (9), together with the objective in Eq. (1), is obtained as

A¼ eAmTs ; B¼
Z Ts

0
eAmτ dτBm; Bw ¼

Z Ts

0
eAmτ dτBmw

Cy ¼
W1 0

0 W2

" #
; D¼ 0

0

� �
; C¼ ½1 0�:

Thus, the objective of the design is to maximize the energy regeneration from the vibrating system
using the control input u(t) while minimizing a weighted vector of the velocity v(t) and the relative
displacement x(t) of the vibrating mass m with respect to the vibrating source with an exogenous
input w(t). It is clear that these are competing objectives. As a result, using the framework
developed in the previous sections, the energy regeneration objective is targeted subjected to a
performance constraint given by a level-set constraint on the L2�gain of a weighted vector of the
velocity v(t) and the relative displacement x(t) with respect to the exogenous input w(t). The
performance level is governed by the value of γ introduced in Section 3.



Table 1
Simulation parameter values.

Parameter Value

m 100 kg
k 10 000 N/m
b 10 N s/m
Ts 0.01 s
W1 1
W2 1
γ 30

Fig. 2. Simulation results: MPC1 (the horizontal lines are that rms gains of the passive system: the thicker one
corresponds to the velocity and the thinner one to the displacement). (a) Convexification C1. (b) Convexification C2.
(c) Convexification C3. (d) Convexification C4.
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Since only the state v(t) is assumed to be measured, the other state of the system is estimated
using the Luenberger observer

v̂kþ1

x̂kþ1

" #
¼ A

v̂k
x̂k

" #
þ Buk þ L ymeas�Cm

v̂k
x̂k

" # !
; ð93Þ



Fig. 3. Simulation results: MPC2 (the horizontal lines are that rms gains of the passive system: the thicker one
corresponds to the velocity and the thinner one to the displacement). (a) Convexification

P
C1. (b) ConvexificationP

C2. (c) Convexification
P

C3. (d) Convexification
P

C4.
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where the observer gain L is designed by minimizing the L2�gain of the estimation error
ð½v x��½v̂ x̂�ÞT from the exogenous disturbance w(t). This is achieved by solving the LMI

minimize η ð94Þ

subject to :

�Pþ I 0 ðPA�QCÞT
0 �η BT

wP

ðPA�QCÞ PBw �P

2
64

3
75$0 ð95Þ

for the matrix variables P and Q, and setting L¼ P�1Q.
Next, the output-feedback relaxed MPC problems MPC1 and MPC2 are solved using the state

estimation error invariant polytope

P ¼ Co r
�1

1

� �
; r

1

1

� �
; r

�1

�1

� �
; r

1

�1

� �� �
; rARþ:

The numerical values of the parameters used in the simulation study are given in Table 1.
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The simulation study was carried out for different values of the objective weighting parameter λ.
For each value of λ, the closed loop system is simulated for 10 s using a uniform random
disturbance with the interval ½�0:005; 0:005� m. The rms gain5 of the velocity v(t) and the relative
displacement x(t) of the closed loop and the passive system,6 as well as the total energy are plotted
against λ. Figs. 2 and 3 show the results for the different convexification approaches forMPC1 and
MPC2 respectively. The rms gains of the corresponding passive systems are plotted using smaller
line widths. It is seen that the closed loop system facilitated energy dissipation and outperformed7

the passive system in all cases. As expected, it is also seen that MPC2 is a little less conservative
than MPC1, thereby regenerating more energy.

7. Conclusions

The problem of optimal energy-regenerative model predictive control for linear systems
subject to stability/dissipativity constraints, as well as some hard constraints on the state and
control vectors was considered. Some convex relaxation approaches of the original nonconvex
MPC problem were considered. As a result, a solution to the original problem was proposed by
solving a more relaxed convex MPC problem. The feasibility and stability of the resulting MPC
problem were also examined. Moreover, output feedback considerations for the formulated MPC
problem were presented. Simulation results using a single degree of freedom vibrating system
were used to validate the theoretical claims made in the paper.
While robustness to exogenous disturbance was properly accounted for in this paper,

robustness to model uncertainties was not considered. In future, efforts will be directed to extend
the methods presented to include robustness to structured and unstructured uncertainties.
Moreover, the methods will also be extended to nonlinear model predictive control (NMPC)
problems.
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