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This paper solves the problem of regulating the rotor speed
tracking error for wind turbines in the full-load region by
an effective robust-adaptive control strategy. The developed
controller compensates for the uncertainty in the control in-
put effectiveness caused by a pitch actuator fault, unmeasur-
able wind disturbance, and nonlinearity in the model. Wind
turbines have multi-layer structures such that the high-level
structure is nonlinearly coupled through an aggregation of
the low-level control authorities. Hence, the control design
is divided into two stages. First, an L2 controller is de-
signed to attenuate the influence of wind disturbance fluc-
tuations on the rotor speed. Then, in the low-level layer, a
controller is designed using a proposed adaptation mecha-
nism to compensate for actuator faults. The theoretical re-
sults show that the closed-loop equilibrium point of the regu-
lated rotor speed tracking error dynamics in the high level is
finite-gain L2 stable, and the closed-loop error dynamics in
the low level is globally asymptotically stable. Simulation re-
sults show that the developed controller significantly reduces
the root mean square of the rotor speed error compared to
some well-known works, despite the largely fluctuating wind
disturbance, and the time-varying uncertainty in the control
input effectiveness.

1 Introduction
Wind energy is increasingly becoming a significant

source of clean energy. However, its market penetration has
been affected adversely by high costs related to manufac-
turing, operation, and maintenance, especially for megawatt
size wind turbines (WTs) producing a great deal of electric-
ity. To expand the lifetime of such large WTs, deploying
active load alleviation control is critical. One efficient ap-
proach to decrease structural loading, and thereby extend the
lifetime of the WTs while maintaining the rated electrical
power is regulating the rotor speed tracking error via control-
ling pitch angles [1–4]. In [2] a PI controller is designed for a
WT to alleviate the mechanical stress; however, it highly re-
lies on gain selection based on the wind speed. In [3] a linear
quadratic regulator is designed to track the generator speed.

However, the closed loop system performance is downgraded
in wider operating range. In [4], the authors proposed a linear
quadratic Gaussian control. However, the controller suffers
from lack of robustness to model uncertainties.

Since WTs are aero-electro-mechanical systems, their
dynamics are surpassingly complicated. There is no explicit
relation between the rotor speed and the pitch angle for WTs
in the region that the wind speed is above the rated value
(full-load region). They have nonlinear dynamics exposed to
stochastic wind signal changing the WTs’ operating points.
Thus, these issues necessitate the design of the nonlinear
controllers for WTs. In [5] a gain-scheduling optimal con-
troller is proposed utilizing genetic algorithm for pitch con-
trol; however, it can only deal with a limited types of wind
signals. In [6] a nonlinear model predictive control (MPC) is
designed for a WT to reduce pitch actuation while reducing
the mechanical loads and regulating the rotor speed tracking
error. However, the controller is not robust against model
uncertainty.

Moreover, it has been proven that robust and adaptive
control strategies tackle with the wind disturbance fluctu-
ations, model uncertainty, and time-varying actuator faults
in WTs [7–14]. In [7], an H∞-state-feedback controller is
designed for a WT to mitigate actuator faults. However,
the controller’s performance is limited to specific operat-
ing points. In [9] a disturbance observer and effective wind
speed estimator are designed for a WT with model uncer-
tainty to maintain the rated electrical power by controlling
the pitch angle. However, the controller design relies on the
estimation of the wind speed. In [8] a robust MPC is de-
signed by solving an LMI for a WT while the pitch actuator
is subjected to a fault. However, the controller’s performance
is dependent on the linearized model of the WT. In [10] a
moving horizon H∞ controller is designed for a WT to con-
trol the pitch angle. It shows that the closed-loop system
achieves the L2 disturbance attenuation from the wind signal
to the states in the framework of dissipation theory. How-
ever, the pitch actuators are assumed to be healthy during
their operations. In [11], and [12] an online system identi-
fier using adaptive directional forgetting scheme is designed
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to extract the WT model and approximate it to a second or
third order system for pitch and torque channels. Then an
adaptive PI controller is designed using modified Ziegler-
Nichols rules. Although the controller can estimate the time-
varying parameters, and regulates the rotor speed error, it is
not robust against the wind signal with high turbulence in-
tensity. In [13] a robust adaptive controller is designed using
clustering-type fuzzy neural network for a WT subjected to
pitch actuator faults. However, the fuzzy controller itself has
several parameters (defuzzification, inference, input and out-
put membership functions, rulebases, etc) to be determined.
In [14] an adaptive L2-gain controller is designed for a class
of singular systems with Lipschitz nonlinearity, actuator sat-
uration, and actuator faults. Although the results show that
the closed-loop system achieves smaller upper bound on the
L2-gain, the actuator faults are assumed to be constant. The
major contributions of this paper are (i) a multi-layered con-
trol structure consistent with the nature of the system, (ii)
a detailed finite-gain analysis and design to compensate for
unmeasurable wind disturbance, nonlinearity and model un-
certainty in the high-level layer, and (iii) low-level adap-
tive control design to compensate for time-varying incipient
pitch actuator faults. The remaining of the paper is orga-
nized as follows: Section 2, introduces notations and pre-
liminary. Section 3, presents the system model. Section 4,
illustrates the control development for all layers. Section 5,
shows the numerical simulation results. Section 6, provides
conclusion remarks, and finally the future work is discussed
in section 7.

2 Notation and Preliminary
The following notions and conventions are utilized in the

paper: R, and Rn denote the space of real numbers, and real
vectors of length n, respectively. R+ includes zero and pos-
itive real numbers. Normal-face lower-case letters (x ∈ R)
are used to represent real scalars, bold-face lower-case let-
ter (x ∈ Rn) represents vectors. The euclidean balls Br(0) is
defined for some r > 0 as Br(0), {x : ‖x‖ ≤ r}. Moreover,
L2 is the space of all piecewise continuous, square-integrable
functions f : R+ 7→ Rn, and the L2 norm of f ∈ L2 is defined
by

‖f‖2 ,

(∫
∞

0
‖f(τ)‖2dτ

) 1
2
< ∞,

and the extended space L2e is the space of all measurable
functions f such that fT ∈ L2 where

fT (t),
{

f(t), 0≤ t < T
0, t ≥ T

, for all T ∈ [0,∞).

Definition 1. (γ-dissipativity) [15] Consider the nonlinear

Fig. 1. Electrical power generated by a typical WT at different re-
gions

system

G :
ż = g(z,ννν)

ωωω = h(z) (1)

where ννν(t) ∈ Lq
2e, z(t) ∈ Ln

2e, ωωω(t) ∈ Ls
2e are the input, the

state variable, and the output, respectively. The nonlinear
system in Eqn. (1) is dissipative with respect to the supply
rate ` : Lq

2e×Ls
2e 7→L2e, if an energy function V (z)≥ 0 exists

such that, for all t1 ≥ t0,

V (z(t1))≤V (z(t0))+
∫ t1

t0
`(ννν,ω)dτ for all ννν ∈ Lq

2e. (2)

In addition, for a γ > 0, if the supply rate is chosen as
`(ννν,ωωω) = γ2 ‖ννν‖2

2−‖ωωω‖
2
2, then (2) indicates a finite-gain L2

stability. As a result, the dynamic is γ-dissipative and in-
equality (2) yields V̇ ≤ γ2 ‖ννν‖2

2−‖ωωω‖
2
2.

Lemma 1. The following characteristics are satisfied [16]

1. sat(χy,y1,y2) = χsat(y, y1
χ
, y2

χ
), for all χ > 0

2. For r > 0, there exists µ > 0 such that y>sat(y,y1,y2)≥
µ‖y‖2

2 , for all y ∈ Br(0)

3 Problem Formulation
In general WTs are operational in two areas, namely

partial-load and full-load regions shown Figure 1. In the for-
mer the optimum electrical power is generated via a torque
control. However, in the latter, since the wind speed is above
the rated value, the rated electrical power can be generated
but it should not pass its rated value and meanwhile the me-
chanical stress should be reduced via the pitch control.

3.1 Drive-train Dynamics
The rotor dynamics in WTs is provided by [1, 17, 18]

ω̇r = f (ν,ωr,θ j), j = 1,2,3 (3)
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,where ωr ∈ L2e, is the rotor speed, θ j ∈ R+ is the jth pitch
angle, ν ∈ L2e is the wind disturbance, and

f (ν,ωr,θ j) = g1(ν,ωr)−g2(ν,ωr)‖θθθ‖2 ,

where θθθ ∈ R3, and

g1(ν,ωr) =
κν3

Jωr

(
ν

ωr
− p1

)
e(−p2

ν
ωr )− P0

Jωr
, (4)

g2(ν,ωr) =
κν3

3Jωr
p3e(−p2

ν
ωr ), (5)

where κ is a positive constant, and the positive constants p1,
p2, and p3 are obtained experimentally. P0, and J are the
rated mechanical power, and the total drive-train inertia, re-
spectively.

3.2 Pitch Systems
The pitch actuators include a hydraulic system whose

dynamics are expressed as follows [19]

θ̈ j =−2ζωnθ̇ j−ω
2
nθ j +ω

2
nθr j, j = 1,2,3, (6)

where ζ, is the damping ratio, and ωn is the natural fre-
quency. θ j, and θr j are the pitch angle output and the pitch
reference (control input) for the j-th pitch actuator, respec-
tively.

Assumption 1. The pitch angle θ j is mechanically con-
strained such that it is bounded as 0≤ θ j ≤ θ, where θ is the
maximum allowable pitch angel.

3.2.1 Fault Model
One type of fault that could happen in pitch actuators is

the high-air content fault, which is an incipient fault, making
the oil is mixed with air. The occurrence of this fault changes
the characteristics of the second-order dynamics in Eqn. (6).
Thus, the uncertainty caused by this fault is parametric mod-
eled as follows

ω
2
n = δω

2
n0
, (7)

ζωn = ρζ0ωn0,

where ωn0 , and ζ0 are the operating points (faultless situa-
tion). Moreover, δ and ρ are uncertain parameters because of
the fault but they are bounded as 0 < δ≤ 1, 0 < ρ≤ 1 [19].

4 Control Development
In this section, the aim is to track the rotor speed oper-

ating point ωr0 robustly. This is achieved via γ-dissipativity.

Define the rotor speed tracking error

ω̃r = ωr−ωr0. (8)

Denote the following filtered error

σ =ω̃r +ψ

∫ t

0
ω̃rdτ︸ ︷︷ ︸
ω̃rI

, (9)

where ψ > 0. Taking first time derivative of Eqn. (9), and
then inserting the time derivative of Eqn. (8) into it yields

σ̇ = ˙̃ωr +ψ ˙̃ωrI

= f (ν,ωr,θ j)+ψω̃r. (10)

Consider the equilibrium points ωr0, ν0, and θ0 in Eqn. (3),
then f (ν0,ωr0,θ0) = 0. Subtracting this equation from
Eqn. (10) yields

σ̇ = f (ν,ωr,θ j)− f (ν0,ωr0,θ0)+ψω̃r.

Then, invoking the mean value theorem [20] results in

σ̇ = ρνν̃+(ρω +ψ) ω̃r +ρρρ
>
θ θ̃θθ (11)

where

ρν =
∂ f (ην,ηω,ηηηθ)

∂ν
,

ρω =
∂ f (ην,ηω,ηηηθ)

∂ω
,

ρρρθ =∇θ f (ην,ηω,ηηηθ),

with ην = λν0 + (1− λ)ν, ηω = λωr0 + (1− λ)ωr, ηηηθ =
λθθθ0 +(1−λ)θθθ for some λ ∈ (0,1), and

θ̃θθ = θθθ−θθθ0,

ν̃ = ν−ν0

, where θθθ0, and ν0 are the pitch angle vector, and the wind
speed at the operating point. These operating points are
known, and they are usually used in the component design
and rating. So, it is reasonable to assume that they are known.
Moreover, the simulation results in section 5, will show that
the controller regulates the rotor speed tracking error well at
different operating points.

Here, the objective is to design an auxiliary control law
θ̃θθ for Eqn. (11), such that the rotor speed tracking error ω̃r
is robustly regulated for all ν̃ ∈ L2e. This is then deployed
for a desired pitch angle for the low-level dynamics. The
subsequent properties hold for the open-loop dynamics in
Eqn. (11).
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Assumption 2. The high-level dynamics is sufficiently
smooth. Hence, the uncertain parameters ρν, and ρω in
Eqn. (11) are bounded as follows

|ρν| ≤ ρ̄ν,

|ρω| ≤ ρ̄ω,

where ρ̄ν, and ρ̄ω are positive constants. Moreover, there
exists ρρρ0 ∈ R3, and a positive constant ϕ such that

ρρρ
>
θ ρρρ0 ≥ ϕ. (12)

Consequently, the design of the auxiliary control law is as
follows

θ̃θθ =−ρρρ0sat
(
kσ,−θ0,θ−θ0

)
, (13)

where k is a positive control gain, and ρρρ0 satisfies the conic
constraint in Eqn. (12). Then, the corresponding high-level
closed-loop error system is obtained as follows

σ̇ =(ρω +ψ) ω̃r +ρνν̃−ρρρ
>
θ ρρρ0sat

(
kσ,−θ0,θ−θ0

)
=(ρω +ψ)(σ−ψω̃rI)+ρνν̃ (14)

−ρρρ
>
θ ρρρ0sat

(
kσ,−θ0,θ−θ0

)
The following theorem provides the robust performance of
the auxiliary control law in the high-level layer.

Theorem 1. Given the high-level control law in Eqn. (13),
and γ> 0, if the control gain is chosen such that the following
sufficient condition is satisfied

k ≥ 1
µϕ

(
1+

(ρ̄ω +2ψ)2

4ψ
+

ρ̄2
ν

4γ2

)
, (15)

then the corresponding closed-loop error dynamics in (14) is
L2-gain stable and the L2-gain from the exogenous signal ν̃

to the regulated error ω̃r is upper bounded by γ.

Proof. Denote the positive definite energy function

V =
1
2

σ
2 +

ψ2

2
ω̃

2
rI . (16)

Since ‖ω̃r‖2 ≤
∥∥(1+ 1

s ω̃r
)∥∥

2 = ‖σ‖2, and considering Defi-
nition. (1), it is sufficient to show that V̇ ≤ γ2ν̃2−σ2. Taking
the time derivative of V , and inserting the high-level closed-
loop dynamics in Eqn. (14) into it, leads to

V̇ = σσ̇+ψ
2
ω̃rI

˙̃ωrI

= σ((ρω +ψ)σ−ψ(ρω +ψ) ω̃rI +ρνν̃)

− 1
k

ρρρ
>
θ ρρρ0(kσ)sat

(
kσ,−θ0,θ−θ0

)
+ψ

2
ω̃rI (σ−ψω̃rI)

Adding, and subtracting
(
γ2ν̃2−σ2

)
, and finally applying

Assumption. (2), and Lemma. (1) yield

V̇ = (ρω +ψ+1)σ
2−ψρωσω̃rI +ρνσν̃

− 1
k

ρρρ
>
θ ρρρ0(kσ)sat

(
kσ,−θ0,θ−θ0

)
−ψ

3
ω̃

2
rI− γ

2
ν̃

2 +
(
γ

2
ν̃

2−σ
2)

=

(
ρω +ψ+1+

ρ2
ω

4ψ
+

ρ2
ν

4γ2

)
σ

2−ψ

(
ψω̃rI +

ρω

2ψ
σ

)2

− γ
2
(

ν̃− ρν

2γ2 σ

)2

− 1
k

ρρρ
>
θ ρρρ0(kσ)sat

(
kσ,−θ0,θ−θ0

)
+
(
γ

2
ν̃

2−σ
2)

≤−

(
kµϕ−1− (ρ̄ω +2ψ)2

4ψ
− ρ̄2

ν

4γ2

)
σ

2 +
(
γ

2
ν̃

2−σ
2)

≤
(
γ

2
ν̃

2−σ
2)

Next, the desired pitch angle vector θθθ designed in the
high-level layer is directly translated to individual desired
pitch angle in the low-level control such that θθθd = θθθ. Without
loss of generality, the control development in the low-level is
performed using a single actuator since the actuator model
provided in Eqn. (6) is the same for all actuators.

Consider the low-level tracking error ε = θ−θd , where
θd is the desired pitch angle for one actuator. Since the pitch
actuator dynamics in Eqn. (6) is significantly faster than the
rotor dynamics given in Eqn. (3), then it is reasonable to as-
sume that θ̇d = 0 for developing the controller for Eqn. (6).
See [21,22] for more detailed analysis where the authors use
singular perturbation and time-scale separation to show that
it is indeed the case for mechatronic systems of this form.
Next, consider the filtered tracking error

z , ε̇+2ζ0ωn0ε. (17)

Taking first derivative of Eqn. (17) yields

ż =ε̈+2ζ0ωn0ε̇

=θ̈+2ζ0ωn0θ̇,

then inserting the pitch actuator dynamics in Eqn. (6), and
the fault model in Eqn. (7) yields

ż = δω
2
n0(θr−θ)−δω

2
n0

(
2(ρζ0ωn0−ζ0ωn0)

δω2
n0

)
θ̇

= δω
2
n0
(
θr−θ−ηθ̇

)
, (18)

where

η ,

(
2(ρζ0ωn0−ζ0ωn0)

δω2
n0

)
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is an uncertain parameter due to actuator faults. Conse-
quently, the low-level control law is designed as

θr = θ− kθz+ η̂θ̇, (19)

where kθ > 0 is the control gain, and η̂ is the parameter esti-
mation. Next, inserting the control law in Eqn. (19) into the
open-loop dynamics in Eqn. (18) yields

ż =−δω
2
n0kθz+δω

2
n0η̃θ̇, (20)

where η̃ = η̂−η is the parameter estimation error. Conse-
quently, the adaptive law is designed as

˙̂η =−αzθ̇, (21)

where α > 0 is an adaptation gain.

Theorem 2. Consider the low-level control law in Eqn. (19),
together with the adaptive law in Eqn. (21), if the following
conditions hold

kθ > 0, α > 0, (22)

then the closed-loop error system in Eqn. (20) is globally
asymptotically stable.

Proof. Denote the positive definite radially unbounded can-
didate Lyapunov function

V =
1
2

z2 +
δω2

n0
2α

η̃
2,

taking first derivative yields

V̇ = zż+
δω2

n0
α

η̃ ˙̂η,

Inserting the closed-loop dynamics in Eqn. (20) results in

V̇ =−δω
2
n0kθz2 +δω

2
n0zη̃θ̇+

δω2
n0

α
η̃ ˙̂η. (23)

Next, inserting the adaptation law in Eqn. (21) yields

V̇ =−δω
2
n0kθz2. (24)

This indicates that V̇ is negative semidefinite implying that
V ∈ L∞; which implies that z ∈ L∞, and η̃ ∈ L∞. Thus, it
implies that ε, and ε̇ (θ̇) are also bounded. Now, consider
Eqn. (20), as z, η̃, and θ̇, are bounded, then ż is also bounded

implying that z is uniformly continuous. Next, taking the
integral of both sides in Eqn. (24) yields

∫
∞

0
V̇ dτ =

∫
∞

0
−δω

2
n0kθz2dτ,

V (∞)−V (0) =−
∫

∞

0
δω

2
n0kθz2dτ, (25)

Since V is bounded, then z ∈ L2. Since z ∈ L2 ∩L∞, and
also it is uniformly continuous, according to the Barbalat’s
lemma [23], z converges to zero asymptotically. Thus, ε→ 0,
and θ̇→ 0 as t→ ∞.

5 Numerical Results
The developed controller is validated on a 5MW vari-

able pitch WT model via the Fatigue Aerodynamics Struc-
tures and Turbulence (FAST) simulator developed by the
US National Renewable Energy Lab (NREL) [17]. The
desired value for the rotor speed is ωr0 = 1.267rad/s, and
the operating points for the pitch angle, and the wind speed
are θ0 = 19.94deg, ν0 = 22m/s. The nominal actuator pa-
rameters are ζ0 = 0.6, ωn0 = 11.11rad/s. The parameters
κ = 7622.7, J = 43784700kg.m2. Regarding the parameters
p1, p2, and p3 in Eqn. (4), and Eqn. (5), their values depend
on the operating point of the WT. In [18], their values are
obtained experimentally. Here, their best values at the oper-
ating point are obtained via solving an optimization problem,
which minimizes the deviation from the experimental values
subject to (3):

Minimize: ‖p− p̄‖2

Subject to:(
κν3

0
Jωr0

(
ν0

ωr0
− p1

)
−

κν3
0

3Jωr0
p3 ‖θθθ0‖2

)
p̌2−

P0

Jωr
= 0,

where p =
[
p1 p̌2 p3

]
, with p̌2 = e−p2

ν0
ωr0 , are the optimiza-

tion variables, and the vector p̄ contains the correspond-
ing reported experimental values. The solution gives p1 =
5.4148, p2 = 0.0682, and p3 = 0.029. Since the wind speed
is bounded in the full-load region as 11.4m/s ≤ v ≤ 25m/s,
and the pitch angle is also bounded as θ∈ [0◦,90◦], the upper
bound parameters are calculated as ρ̄ν = 1, ρ̄ω = 1.5. More-

over, considering that ρρρθ =
−2κη3

ν p3
3Jηω

e
(
−p2

ην
ηω

)
ηηηθ, and choos-

ing ρρρ0 = [−1 − 1 − 1 ]>, then ρρρ>
θ

ρρρ0 ≥ 0.15 is obtained.
Consequently, for a given γ = 0.25, and a fixed ψ = 0.5, and
then applying the sufficient condition in Eqn. (15) gives the
condition for the control gain as k ≥ 54.17 in the high-level
control loop, which the choice of k = 55 is chosen. Re-
garding (15), decreasing γ increases the gain k, and since
‖ω̃r‖ ≤ ‖σ‖ ≤ γ‖ṽ‖, decreasing γ attenuates the impact of
the wind disturbance on the rotor speed. Hence, increasing

5 Copyright © by ASME



Fig. 2. Block diagram of the developed controller

Fig. 3. Step wind signal

Fig. 4. Rotor speed response, and control authority subjected to the
step wind signal

k decreases the rotor speed fluctuations against the wind dis-
turbance. The design parameters for the low-level controller
are chosen such that the sufficient condition in Eqn. (22) is
satisfied, then the design parameters are chosen as α = 0.3,
kθ = 2.5. Note that kθ adjusts the speed of the error con-
vergence while α tunes the speed of the parameter estima-
tion. The control structure of the developed controller is
illustrated in Fig. 2. The proposed controller is compared
with the well-tuned PI-gain-scheduling controller (baseline
controller) developed by NREL [17], and an adaptive con-

Fig. 5. Stochastic wind signal

Fig. 6. Rotor speed response, and control authority subjected to the
stochastic wind signal

troller proposed in [11], where in the later an adaptive di-
rectional forgetting scheme is utilized to identify the model.
Two cases, with deterministic and a stochastic wind signals,
are used to show the performance of the proposed control
system. The stochastic wind signal has a mean value of
22m/s, and the turbulence intensity of 20% produced by the
TurbSim software, [24]. The fault is ramped up in the time
interval 150s− 180s, and then completely activated within
180s−220s, and ramped down within 220s−250s. Figure 3

6 Copyright © by ASME



Fig. 7. Faulty pitch actuator and the estimated parameter subjected
to the step wind signal

Fig. 8. Faulty pitch actuator and the estimated parameter subjected
to the stochastic wind signal

shows the deterministic wind signal applied to the WT. Fig-
ure 4 shows the rotor speed response subjected to the de-
terministic wind signal. It clearly illustrates that the pro-
posed controller outperforms others in rejecting the actua-
tor fault, and has significantly less fluctuations in the rotor
speed, when the wind speed is changing. Figure 5 shows the
stochastic wind signal applied to the WT. Figure. 6 shows the
rotor speed response, and the control authority to the stochas-
tic wind signal. It shows that other methods have huge fluc-
tuations between 300s-450s due to a sudden drop in the wind
speed. Note that the rotor speed responses are noisy.

Figure. 7 (deterministic), and Fig. 8 (stochastic) illus-
trate the results of the low-level closed-loop system. The
results show that when the fault happens, the adaptive pa-
rameter estimation starts to increase, and when the fault is
linearly vanishing, at the same time, the adaptive parameter
converges to its faultless value. Hence, the adaptive mech-
anism rejects this time-varying-incipient fault. Also, Fig. 8
shows that the proposed controller has more pitch activities
to deal with the stochastic wind signal. Table 1 shows the
root mean square (rms) of the rotor speed error with respect
to the PI-gain-scheduling controller. It shows that the devel-
oped controller significantly reduces the rotor speed tracking
error. Note that the numbers are relative to that of the NREL’s
baseline controller and does not represent the absolute error
for each controller. This was done because the absolute num-
bers for the proposed controller are really small. Table 2
compares the rms of the error of the rotor speed with re-
spect to the fault-free baseline controller during the time that
the fault can happen, i.e, between 150sec− 250sec. Table 2

Fig. 9. Root means square of the rotor speed tracking error sub-
jected to stochastic wind signals at different operating points

shows that the rms of the error for the proposed controller is
not only the smallest, but also has no increment when fault
occurs compared to other controllers. Figure 9 compares the
rms of the rotor speed error subjected to stochastic wind sig-
nals with different mean values, the TI of 20%, and 24×24
girds. It shows that the proposed controller attenuates the
wind disturbance and has very small increment in the rms of
the error when the wind speed increases.

Table 1. Relative Rms of the rotor speed error compared with
NREL’s baseline controller

Wind type Deterministic Stochastic

Baseline Controller [17] 100% 100%

Adaptive Controller [11] 142.68% 175.59%

Proposed Controller 29.85% 28.97%

Table 2. Relative Rms of the rotor speed error compared with the
fault-free NREL’s baseline controller subjected to stochastic wind sig-
nal

Fault condition Fault-free Faulty

Baseline Controller [17] 100% 102.65%

Adaptive Controller [11] 136.34% 141.91%

Proposed Controller 34.22% 34.22%

6 Conclusion
This paper has proposed a nonlinear robust-adaptive

controller for a WT with faulty pitch actuators. It was shown
that the proposed L2 controller provides a finite-gain L2 sta-
ble mapping from the wind disturbance to the rotor speed
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tracking error and the proposed adaptation mechanism en-
sures a globally asymptotically stable pitch angle error in the
low-level layer with time-varying uncertainty in the control
input effectiveness. Simulation results show a considerable
reduction in fluctuations of the output in spite of exposure
to an unmeasurable largely fluctuating wind disturbance and
time-varying actuator faults.

7 Future Work
While this paper designed an effective robust-adaptive

controller, it did not address the problem for individual actu-
ators. Thus, to improve the efficiency of the controller, faulty
actuators should be indentified, and then a splitter should be
designed to distribute the control authority from the high-
level control to the low-level layer based on the degree of
the faults. In addition, more aggressive faults, and actuator
failure, will be considered.
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