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Summary

In this brief, we develop a fault tolerant control (FTC) using a hierarchical-robust
methodology with guaranteed stability for a wind turbine (WT), which is subject
to an exogenous input, and an actuator fault. The high-level control is designed to
robustly compensate for the nonlinearities, uncertainty, and disturbance in the sys-
tem. The low-level control is designed to robustly automatically allocate control
authority among redundant actuators mitigating an actuator fault. At the low-level,
the robust control problem is transformed into an equivalent optimal control problem.
Finally, the developed FTC is validated using a comprehensive simulation study on a
5MW variable-pitch wind turbine model given in the Fatigue, Aerodynamics, Struc-
tures, and Turbulence (FAST) simulator provided by the U.S. National Renewable
Energy Laboratory (NREL). The results show that the developed FTC retains robust
performance in the presence of wind disturbance, and a time-varying actuator fault.
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1 INTRODUCTION

It is well-known that wind is becoming an increasingly significant form to meet future energy requirements1,2,3,4,5. However, its
market penetration has been adversely affected due to high maintenance costs for MW-scale wind turbines (WTs). To expand
the lifetime of such large modern WTs, using active load alleviation control is critical6,7. One effective approach to decrease
structural loading, thereby extending the lifetime of the WTs’ components, while generating the rated electrical power is to use
pitch control8,9,10,11. A variety of pitch control strategies have been proposed in literature12,13. In12, and14 a Proportional-Integral
controller for the blade pitch angle is designed to decrease the mechanical stress. However, the design is highly dependent on
the wind speed – which imposes additional constrain/cost of instrumenting for accurate wind speed measurement. In15 a linear
quadratic regulator for pitch control is proposed. Although the simulation results show a precise tracking of the generator speed,
they are only shown for a limited range of wind speed. Likewise, linear quadratic Gaussian control13,16 cannot properly work at
different operating points.
In order to mitigate the effect of model variation, a variety of nonlinear controllers have been proposed for WTs. In17 a gain-

scheduled-optimal controller is proposed which uses genetic algorithm for pitch control. However, it requires the knowledge
of the WT’s dynamics at different operating points. The authors in18 use a Fuzzy logic based approach which, though shows
significant promise for nonlinear system, has too many non-intuitive parameters to be tuned. A linear parameter varying (LPV)
controller is developed in19 but it requires exact dynamic model at different operating points. An l1 optimal controller, which
is based on gain-scheduling approach, is developed in20 for the pitch control of a 5MW WT using its linear model at different
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operating points but, due to the interpolation operation, the overall performance of the controller is degraded when the system
switches from one operating point to the other. In21, the authors implement a feedback linearization scheme; however, this
method requires accurate modeling of the WT. An SMC is proposed for a DFIG-based WT in22. An adaptive SMC is developed
in23; however, the results show considerable chattering which could be harmful for the actuators. An adaptive integral sliding
mode control (SMC) is developed in24.While satisfactory performance is achieved, the results show that the closed-loop system
suffers from peaking phenomena.
Moreover, it is inevitable that a WT encounters internal fault(s) at some points during its useful life and operation. This can

happen in sensors, actuators and/or other significant components of the system25,26,27,28. In particular, several types of faults could
occur in pitch actuators. Pitch actuator faults can happen due to hydraulic leakage, high-air content, and pump wear changing
its dynamics25,28 or an offset in the pitch actuator29. The pitch systems collaboratively control the speed of the WT when the
wind speed is above the rated value (full-load region). When there is no fault and each pitch system is operating efficiently as
designed, the total control authority is divided equally among them. Thus, baseline control are usually designed with only one
pitch dynamic with small parametric variations handled by inherent robustness of the control system. However, when there is
fault in any of the pitch subsystems, the faulty actuator can no longer deliver on the reference commands. Depending on the
fault scenario, if the underlying low-level controller is sufficiently robust, it may readjust to achieve good tracking. However,
when this happens, there is unnecessary loss of efficiency as the robust control requires higher control authority in terms of
either higher gain, frequency or both. On the other hand, if the underlying low-level control is not sufficiently robust, or at least
adaptive to the fault, the overall system suffers from the deficiency. Thus, there is a need for collaborative management of the
faulty situation, where the healthy actuators efficiently take up the deficiencies in the faulty ones in order to achieve overall
system objectives while not loosing much on overall efficiency.
Consequently, fault tolerant control (FTC) plays a pivotal role inWT technology. Two kinds of FTC have appeared in literature;

Passive Fault Tolerant Control (PFTC),30,31,32,23,33,34 and Active Fault Tolerant Control (AFTC)35,36,37,38,29,39,40,41,42,43. PFTC is
a robust control designed to stabilize the system and also meet the required performance of the system under the faulty system.
AFTC, however, uses detection and diagnoses techniques along with the controller. While the PFTC does not use any fault
detection method, its structure, design, and implementation is much simpler than AFTC. A virtual sensor and actuator (VSA),
Takagi-Sugeno (TS) fuzzy based, and an adaptive FTC44 approaches have been proposed for a WT in the full-load region.
However, in almost all the cases, there is considerable negative spikes in the electrical power signal when fault occurs in the
pitch actuators.
In order to leverage the simplicity of PFTC, while achieving the robustness of AFTC, this paper considers a layered-structure

control development approach. The developed hierarchical robust control is shown in Fig. 1. The high-level control loop is
designed to compensate for wind disturbance, model uncertainty, and nonlinearity. The low-level control is designed to allocate
the aggregated command from the high-level while mitigating with pitch actuator faults. This is done via a splitter design. In
general, the splitter implements the solution to an optimization problemwhich formulated to incorporate relevant multi-objective
performance and operational constraints. The main contributions pursued in this paper are:

1. Reformulating the rotor dynamics to incorporate a more realistic nonlinear phenomenological model of the control effec-
tiveness. This exposes the dependence on a vector of pitch angles and contrary to existing approaches,15,24,45,46, which
only rely on the linearized effectiveness with respect to the pitch angle.

2. A high-level robust control structure for compensating for nonlinearities, uncertainties and unmeasurable wind speed in the
control input effectiveness. Existing approaches20,47,48,49 either suppose that the wind speed is measurable in their design
for simplicity, or the controller design relies on a wind speed observer which either attempts to estimate the wind speed
directly9,16,50,51,52,53,54, or the power coefficient which itself depends on the wind speed29,55. In any case, it is extremely
difficult to accurately estimate those quantities, thereby resulting in overall closed-loop performance degradation.

3. A low-level design which involves converting a robust control problem into an equivalent optimal control problem. The
equivalent optimal control problem is easily solvable using LQR-like development, and is shown to be a solution to the
robust control problem which is formulated to mitigate actuator faults. Simulation results show that the resulting generator
power is much smoother, with negative spikes eliminated.

4. Rigorous stability analysis for each layer of the developed fault tolerant control.

The rest of the paper is organized as follows: Section 2 introduces the notations and convention employed throughout the
paper. Section 3 develops the system model, including the derive-train dynamics, pitch actuator dynamics and the fault model.
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FIGURE 1 Hierarchical layers of the proposed controller

Section 4 presents the control development for all layers. Section 5, presents the numerical simulation results. Finally, concluding
remarks are given in Sections 6.

2 NOTATION AND PRELIMINARY

The following notions and conventions are employed throughout the paper: ℝ,ℝn,ℝn×m denote the space of real numbers, real
vectors of length n and real matrices of n rows and m columns, respectively. ℝ+ denotes positive real numbers. X⊤ denotes
the transpose of the quantity X. Normal-face lower-case letters (x ∈ ℝ) are used to represent real scalars, bold-face lower-
case letter (x ∈ ℝn) represents vectors, while normal-face upper case (X ∈ ℝn×m) represents matrices. The euclidean balls
Br(0) and Br(x0) are defined respectively for some r ∈ ℝ+ as Br(0) ≜ {x ∶ ‖x‖ ≤ r} and Br(x0) ≜

{

x ∶ ‖
‖

x − x0‖‖ ≤ r
}

. The
space of all square-integrable signals defined as

n2 ≜
⎧

⎪

⎨

⎪

⎩

f ∶ ℝ+ → ℝn

|

|

|

|

|

|

|

∞

∫
0

‖f (�)‖2 d� <∞

⎫

⎪

⎬

⎪

⎭

.

For each T ∈ ℝ+, the function fT ∶ ℝ+ → ℝn is defined by

fT (t) ≜
{

f(t), 0 ≤ t < T
0, t ≥ T

,

and is called the truncation of f to the interval [0, T ]. Consequently, the set n2e of all measurable signal f ∶ ℝ+ → ℝn such
that fT (t) ∈ 2 for all T ∈ [0, ∞) is called the extension of n2 or the extended 2-space.

Definition 1. (Finite-Gain -stability) Consider the nonlinear system

 ∶ ẋ = f (x, v)
z = ℎ(x) (1)

where x ∈ n2e, v ∈ p2e, z ∈ m2e are the state, input, and output vector signals, respectively. The system in (1), considered as a
mapping of the form  ∶ p2e → m2e is said to be finite-gain 2-stable if there exists real non-negative constants 
, � such that
‖(v)‖2 ≤ 
 ‖v‖2 + �. Moreover, 
∗ = inf

{


 ∶ ‖(v)‖2 ≤ 
 ‖v‖2 + �
}

is the corresponding 2-gain (will be referred to as
gain) of the system.
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Definition 2. (
-dissipativity) The dynamic system (1) is dissipative with respect to the supply rate s(v, z) ∈ ℝ, if there exists
an energy function V (x) ≥ 0 such that, for all tf ≥ t0,

V (x(tf )) ≤ V (x(t0)) +

tf

∫
t0

s(v, z)dt ∀ v ∈ 2e. (2)

Moreover, given a positive scalar 
 , if the supply rate is taken as s(v, z) = 
2 ‖v‖22 − ‖z‖22, then the dissipation inequality in (2)
implies a finite-gain 2 stability56. Consequently, the system is said to be 
-dissipative and the dissipativity inequality in (2)
becomes

V̇ ≤ 
2 ‖v‖22 − ‖z‖22
Definition 3. (sat) Given two real numbers x1 ≤ 0 ≤ x2, a function sat ∶ ℝn → ℝn is defined element-wise as:

sat(x, x1, x2)i ≜
⎧

⎪

⎨

⎪

⎩

x2 if xi ≥ x2
xi if x1 ≤ xi ≤ x2
x1 otherwise

. (3)

Lemma 1. The following properties hold57

1. sat(�x, x1, x2) = �sat(x,
x1
�
, x2
�
), for all � > 0

2. Given r > 0, there exists �r > 0 such that x⊤sat(x, x1, x2) ≥ �r ‖x‖2 , for all x ∈ Br(0)

Proof. the first statement is straightforward from the definition. The second statement holds by setting

�r =
{

1 if r ≤ xm
xm
r2
(

2r − xm
)

if r ≥ xm
,

where xm = min{|x1|, |x2|}.

3 SYSTEMMODEL DEVELOPMENT

WTs generally operate in two regions shown in Figure 2. In the partial-load region, the WT can produce an optimum amount of
power. This is usually achieved by some form of torque control. In the full-load region, the wind speed is above the rated value;
as a result, the rated electrical power can be generated while reducing the mechanical stress using the pitch control.

FIGURE 2 Ideal power curve versus wind speed for the operation of a typical WT24
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Figure 3 shows a schematic of a typical WT with the different control systems covering both the partial-load and the full-load
regions. Next, in order to facilitate the subsequent control design, an outline of the dynamical model for the relevant subsystems
of the WT is given.

FIGURE 3 Overall schematic diagram of a WT control system24

3.1 Drive-train Dynamics
A lumped-parameter model of the rotor–generator sub-assembly is given by58,59

!̇ = b1(v, !) − b2(v, !)||�||2 (4)

where ! ∈ ℝ is the rotor speed, � ∈ ℝ3 is a vector of the pitch angle, v ∈ ℝ+ is the wind speed, and

b1(v, !) =
cv3

2J!

( v
!
− m1

)

e(−m2
v
!
) −

P0
J!

b2(v, !) =
cv3

6J!
m3e

(−m2
v
!
)

are obtained from a phenomenological model of the aerodynamic torque60 with experimentally determined positive constants
m1, m2, m3, c, and P0 is the rated mechanical power, J is the total drive-train inertia. As given by (4), the rotor dynamics is
driven by an aggregation of the pitch angles. This drives the motivation for the hierarchical control where the high level specifies
the desired aggregation and low levels, in turns, specify local pitch angles such that the specified aggregation is achieved, while
mitigating any fault in the local subsystem.

3.2 Pitch actuator dynamics
Each independently controlled pitch system comprises of hydraulic piston servo mechanism whose responses are typically
abstracted by the second order characteristic model

�i =
!2ni

s2 + 2�i!nis + !
2
ni

�ri, i = 1, 2, 3, (5)

where �i, and !ni are the damping ratios and natural frequencies of actuators, respectively. �i, and �ri are the corresponding pitch
angle outputs and the reference pitch inputs for each system, respectively.

3.2.1 Fault Model
One fault could occur in pitch actuators is due to the high-air content, which causes air-oil mixture. Moreover, it is well known
that when such a fault occurs, it alters the natural frequency and damping ratio61. Thus, the uncertainty caused by this fault is
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considered parametric and can be modeled as

!2n = !
2
n0
(1 + �) , (6)

�!n = �0!n0 (1 + �) ,

where!n0 and �0 are the respective natural frequency and the damping ratio at the operation point (free-fault situation).Moreover,
� and � are uncertain parameters but bounded as −1 < −� ≤ � ≤ 0, −1 < −� ≤ � ≤ 0 for some known positive constants � and
�. Consequently, the uncertainty model above can be written as

!2n = !
2
n0

(

�̂ + Δ�
)

, (7)

�!n = �0!n0
(

�̂ + Δ�
)

,

where Δ� and Δ� are positive quantities upper bounded by 1, �̂ ≜ 1 − � and �̂ ≜ 1 − �.

4 CONTROL DEVELOPMENT

The control design is done in three stages. First, a high-level controller is designed to make the 2-gain from the wind speed
variation to rotor speed variation as small as possible. Second, a splitter distributes the desired pitch signal to the low-level control
loop. Finally, a robust low-level control law is designed to then track the allocated pitch desired signals from the high-level
control.

4.1 Drive-train control
The objective of this control design is to robustly regulate the rotor speed against wind speed variation. This is done using
the 
-dissipativity described in the preliminary section. The control signal for this purpose is the aggregated pitch angle ‖�‖2

corresponding to the aerodynamic torque. Throughout this subsection, in order to facilitate clear exposition, the substitution
� ≜ ‖�‖2 is used for the rotor dynamics in (4). In addition, the following assumptions are made concerning the model:

Assumption 1. There exists a positive constant cb such that

cb < b2(v, !) for all ! ∈ ℝ, v ∈ ℝ+

This is a reasonable assumption for the full-load region, as depicted in Figure 2, since the rotor and wind speeds are both lower
and upper bounded by constants.

Assumption 2 (Bounded disturbance input effectiveness). There exists a positive constant cv such that
|

|

|

|

)
)v

(

b1(v, !) − b2(v, !)�0
)|

|

|

|

≤ cv,

for all v.

Consequently, the rotor tracking error is given by

!̃ =! − !0,

Consider the filtered tracking error

� = !̃ + �

t

∫
0

!̃(�)d�

⏟⏞⏞⏞⏟⏞⏞⏞⏟
!̃I

,
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where � is a positive constant. Taking first time derivative yields

�̇ = ̇̃! + �!̃
=!̇ + �!̃
=b1(v, !) − b2(v, !)� + �!̃

Substituting the rotor dynamics in (4), and adding and subtracting the terms b1(v0, !), b2(v, !)�0, and b2(v0, !)�0, yields

�̇ =
(

b1(v, !) − b2(v, !)�0
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
f (v, !)

−
(

b1(v0, !) − b2(v0, !)�0
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
f (v0, !)

+ b1(v0, !) − b2(v0, !)�0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

 0

−b2(v, !) (� − �0)
⏟⏞⏟⏞⏟

�̃

+�!̃, (8)

which after using the Mean Value Theorem62 yields

�̇ =  0 + �!̃ − b2(v, !)�̃ + Lvṽ, (9)

where

f (v, !) − f (v0, !) =
)f (v, !)
)v

|

|

|

|

|v="v0+(1−")v

(v − v0)
⏟⏟⏟

ṽ

, for some " ∈ [0 1]

=
( )
)v

(

b1(v, !) − b2(v, !)�0
)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Lv

|

|

|

|

|v="v0+(1−")v

ṽ

Assumption 3 (Nominal Stability). Since at rated conditions, the WT, together with other systems downstream, have enough
damping such that the system is nominally asymptotically stable. For that reason, it is assumed that

� 0 ≤ 0

Consequently, the control law is designed as

� = �0 + sat
(

k�,−�0, �̄ − �0
)

, (10)

where �̄ is the maximum allowed aggregated pitch angle, and k is a positive constant.

The achieved closed-loop performance is summarized in the main result bellow.

Theorem 1 (Main Result). Consider the control law in (10) where the control gains k, and � are chosen to satisfy the sufficient
condition

k −
(1 + �)
cb�r

≥
c2v

4
2cb�r
(11)

for some real number 
 > 0. Suppose that there exists a positive constant �̄v > 0 such that the wind disturbance is bounded as
|ṽ| ≤ �̄v. Then, if the initial condition satisfies the inclusion

�(0) ∈ Br(0) (12)

with r ≜ 
�̄v, the closed-loop error system in (9), is 
 − dissipative.

Proof. Consider the energy function

V = 1
2
�2 + �2

2
!̃2I

taking first time derivative yields

V̇ = ��̇ + �2!̃I !̃
= �

(

 0 + �
(

� − �!̃I
)

− b2sat
(

k�,−�0, �̄ − �0
)

+ Lvṽ
)

+ �2!̃I
(

� − �!̃I
)

= � 0 + ��2 −
1
k
b2(v, !) (k�) sat

(

k�,−�0, �̄ − �0
)

+ �Lvṽ − �3!̃2I
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Adding and subtracting
(


2ṽ2 − �2
)

, and using Assumption. 1, and Assumption. 3 yields

V̇ ≤ ��2 −
cb
k
(k�) sat

(

k�,−�0, �̄ − �0
)

+ �Lvṽ + 
2ṽ2 − �2 + �2 − 
2ṽ2 − �3!̃2I

≤ (� + 1) �2 −
cb
k
(k�) sat

(

k�,−�0, �̄ − �0
)

− 
2
(

ṽ −
Lv
2
2

�
)2

+
L2v
4
2

�2 − �3!̃2I + 

2ṽ2 − �2

≤

(

� + 1 +
L2v
4
2

)

�2 −
cb
k
(k�) sat

(

k�,−�0, �̄ − �0
)

− �3!̃2I + 

2ṽ2 − �2

Using Lemma 1, and Asssumption 2 leads to

V̇ ≤

(

� + 1 +
c2v
4
2

− cbk�r

)

�2 + 
2ṽ2 − �2 for all � ∈ Br(0)

Applying the sufficient condition (11) leads to

V̇ ≤ 
2ṽ2 − �2, for all � ∈ Br(0) (13)

Now, since ṽ2 < �̄v2, then V̇ < 0 whenever � > r. Thus, �(0) < r implies that the set Br(0) is positively invariant and (13) holds
with the set. Thus, the conclusion holds given the sufficient condition in (11) and the initial condition inclusion in (12).

Remark 1. 
 − dissipative implies that ‖�(s)‖2 ≤ 
 ‖
‖

ṽ‖
‖2 which also implies that

‖

‖

‖

‖

(

1 + �
s

)

!̃(s)
‖

‖

‖

‖2
≤ 
 ‖

‖

ṽ(s)‖
‖2 .

Now, since ‖
‖

!̃(s)‖
‖2 ≤

‖

‖

‖

‖

(

1 + �
s

)

!̃(s)
‖

‖

‖

‖2
, it follows that

‖

‖

!̃(s) ‖
‖2 ≤ 
‖

‖

ṽ(s)‖
‖2 .

Thus, (9) seen as the mapping ṽ → !̃ is also 
 − dissipative for all � > 0.

4.2 Spliter design
As shown in Fig. 1, the objective of the splitter is to translate the hierarchical desired aggregated pitch angle to individual desired
pitch angle for the low-level control. Since the fault scenario considered in this paper is transient fault, (as against permanent
actuator damage), the fault-tolerant problem is deferred to the low-level controller and the splitting problem is defined to enforce
equal splitting among each desired pitch angle. This is consistent with existing approaches in literature23,63,64. However, this
structure allows us to incorporate multiple fault scenarios, including a combination of transient faults and permanent actuator
damage in which any permanently damaged actuator needs to be taken offline completely, while resiliently specifying tracking
for the other actuators. This particular splitting problem is challenging because it introduces additional switching dynamics
whose effect needs to be taking into account from both the high-level control to the low-level control problem. Due to space
limitation, and not to divert too much from the original scope of the current paper, we will focus more on the elaborate splitter
design in future work. For the time being, assuming equal splitting for each desired pitch angle, the splitter algorithm is given by:

�d =
√

�d
3

4.3 Pitch control
In this section, the control development is carried out for a single actuator. The resulting control structure is then applied for all
the actuators. This does not result in any loss of generality since the model structure given in (5) is the same for all actuators.
Let �̃ = � − �d be the corresponding tracking error. Since the pitch actuators are much faster than the rotor dynamics, it
is reasonable to assume that �̇d = 0 for the pitch control development. Alternatively, one could use singular perturbation to
separate the dynamic into slow-and fast-time scales, with the fast-time scale dynamic decaying exponentially fast depending on
the perturbation parameter. The controller development is then done to stabilize the slow-time scale dynamic65,66.
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In the end, the resulting control converges exponentially fast to the one obtained by setting ̇̃� = 0.
Thus, the uncertain open-loop error system is given by

̈̃� = −!2n0�̃ − 2�̂�0!n0
̇̃� + �̂!2n0�̃r − Δ�!

2
n0
(

�̃ − �̃r
)

− Δ�
(

2�0!n0 ̇̃�
)

(14)

where Δ�, Δ� are uncertain parameters defined in (7). The following definition gives a formal description of the robust control
problem (RCP) considered in this work.

Definition 4. (Robust control problem) Find a linear feedback law of the form

�̃r = kp�̃ + kd ̇̃�

such that the resulting uncertain closed-loop error system from (14) is globally asymptotically stable for all uncertainties Δ�,
and Δ� .

Next, the RCP above is translated into a more tractable associate optimal control problem (OCP)67,68 formally stated in the
following definition.

Definition 5. (Optimal control problem (OCP)) For given positive real numbers q1 and q2, find the control law that minimizes
the infinite horizon cost functional

∞

∫
0

(

[

�̃
̇̃�

]⊤ [
q1 0
0 q2

] [

�̃
̇̃�

]

+ 1
2
�̃2r (�)

)

d� (15)

subject to the certain dynamic system
[

̇̃�
̈̃�

]

=
[

0 1
−!2n0 −2�̂�0!n0

] [

�̃
̇̃�

]

+
[

0
�̂!2n0

]

�r (16)

where q1, and q2 are positive weights.

The following Lemma gives the solution to the OCP above.

Lemma 2. The optimal control law is

�̃∗r = −!
2
n0

(

p12�̃ + p2 ̇̃�
)

(17)

where

p12 =
1

�̂2!2n0

(
√

2�̂2q1 + 1 − 1)
)

p2 =
1

�̂2!3n0

(

√

2�̂2!2n0
(

q2 + p12
)

+ 4�̂2�20 − 2�̂�0

) (18)

Proof. The optimal cost to go

Vl(t) = min

∞

∫
t

(

[

�̃
̇̃�

]⊤ [
q1 0
0 q2

] [

�̃
̇̃�

]

+ 1
2
�̃2r

)

d�, (19)

satisfies the Hamilton-Jacobi-Bellman equation

min
�̃r

{

[

�̃
̇̃�

]⊤ [
q1 0
0 q2

] [

�̃
̇̃�

]

+ 1
2
�̃r +

[

)Vl
)�̃

)Vl
) ̇̃�

]

[

̇̃�
̈̃�

]}

= 0. (20)

from which the optimal control law is obtained as

�̃∗r = −
[

)Vl
)�̃

)Vl
) ̇̃�

]

[

0
�̂!2n0

]

(21)

with Vl satisfying
[

�̃
̇̃�

]⊤ [
q1 0
0 q2

] [

�̃
̇̃�

]

+
[

)Vl
)�̃

)Vl
) ̇̃�

]

[

0 1
−!2n0 −2�̂�0!n0

] [

�̃
̇̃�

]

− 1
2

(

[

)Vl
)�̃

)Vl
) ̇̃�

]

[

0
�̂!2n0

])2

= 0 (22)
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Without loss of generality, let

Vl =
1
2

[

�̃
̇̃�

]⊤ [
p1 p12
p12 p2

] [

�̃
̇̃�

]

(23)

where p1, p12, and p2 are the solutions of Algebraic Ricatti Equations (AREs) obtained from (22) and (23) as follows
[

q1 0
0 q2

]

+1
2

[

0 1
−!2n0 −2�̂�0!n0

]⊤ [
p1 p12
p12 p2

]

+ 1
2

[

p1 p12
p12 p2

] [

0 1
−!2n0 −2�̂�0!n0

]

−1
2

[

p1 p12
p12 p2

] [

0
�̂!2n0

] [

0
�̂!2n0

]⊤ [
p1 p12
p12 p2

]

= 0,

[

q1 −
1
2
�̂2!4n0p

2
12 − !

2
n0p12 − 1

2
!2n0p2 +

1
2
p1 − �̂�0!n0p12 −

1
2
�̂2!4n0p2p12

− 1
2
!2n0p2 +

1
2
p1 − �̂�0!n0p12 −

1
2
�̂2!4n0p2p12 q2 + p12 − 2�̂�0!n0p2 −

1
2
�̂2!4n0p

2
2

]

= 0.

Then, equating each entry to 0 yields:
1
2
�̂2

(

!2n0p12
)2 + !2n0p12 = q1

1
2
�̂2!4n0p

2
2 + 2�̂�0!n0p2 = q2 + p12

p1 = !2n0p2 + 2�̂�0!n0p12 + �̂
2!4n0p2p12.

(24)

The first two equations give the desired expressions for p12 and p2 in (18). Finally, we show that (18), together with p1 in the
third equation renders Vl a positive definite function. It is clear that p12 > 0 and p2 > 0. Next,

p1p2 − p212 =!
2
n0p

2
2 + 2�̂�0!n0p12p2 + �̂

2!4n0p
2
2p12 − p

2
12

=p12
(1
2
�̂2!4n0p

2
2 + 2�̂�0!n0p2 − p12

)

+ !2n0p
2
2 +

1
2
�̂2!4n0p

2
2p12

=p12q2 + !2n0p
2
2 +

1
2
�̂2!4n0p

2
2p12 > 0

The connection between the solution to the OCP and the RCP is described in the following theorem.

Theorem 2. If the parameters of the OCP in Definition 5 satisfies the sufficient conditions

q1 >
1
4�̂

and q2 >
2�20
�̂2!2n0

, (25)

then the solution of the OCP is also a solution to the RCP in Definition 4. Moreover, the origin of the resulting uncertain
closed loop error dynamics is globally exponentially stable, for all values of the uncertain parameters, with the decay rate of at

least 2
�̄
min

{

q1 −
1
4�̂
, q2 −

2�20
�̂2!2n0

}

, where �̄ is the maximum eigenvalue of the symmetric positive definite matrix
[

p1 p12
p12 p2

]

,

where p1, p2, p12 are the corresponding solutions of the AREs in (24).

Proof. It is sufficient to show that the minimal cost functional Vl is a Lyapunov function for the robust control problem in
Definition 4. First, we observe that Vl is positive definite and radially unbounded as Vl > 0, �̃ ≠ 0, �̃r ≠ 0 and Vl = 0, �̃ = 0, ̇̃� = 0
and if �̃, ̇̃� →∞, then Vl →∞. Next, taking the first time derivative

V̇l =
)Vl
)�̃

̇̃� +
)Vl
) ̇̃�

̈̃�

Substituting (14) yields

V̇l =
)Vl
)�̃

̇̃� +
)Vl
) ̇̃�

(

−!2n0�̃ − 2�̂�0!n0 + �̂!
2
n0�̃r

)

+
)Vl
) ̇̃�

(

−Δ�!2n0�̃ − 2Δ��0!n0
̇̃� + Δ�!2n0�̃r

)

.

Then, inserting the optimal control law (21) in Lemma. 2 leads to

V̇l = −!2n0
)Vl
) ̇̃�

�̃ +

(

)Vl
)�̃

− 2�̂�0!n0
)Vl
) ̇̃�

)

̇̃� − �̂2!4n0

(

)Vl
) ̇̃�

)2

+
)Vl
) ̇̃�

(

−Δ�!2n0�̃ − 2Δ��0!n0
̇̃�
)

− Δ� �̂!4n0

(

)Vl
) ̇̃�

)2

.
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Using (22) yields

V̇l = −q1�̃2 − q2 ̇̃�2 −
1
2
�̂2!4n0

(

)Vl
) ̇̃�

)2

− Δ�!2n0
)Vl
) ̇̃�

�̃ − 2Δ��0!n0
)Vl
) ̇̃�

̇̃� − Δ� �̂!4n0

(

)Vl
) ̇̃�

)2

= −q1�̃2 − q2 ̇̃�2 − Δ�!2n0
⎛

⎜

⎜

⎝

)Vl
) ̇̃�

�̃ + �̂!2n0

(

)Vl
) ̇̃�

)2
⎞

⎟

⎟

⎠

− 2!2n0
⎛

⎜

⎜

⎝

�0
!n0

Δ�
)Vl
) ̇̃�

̇̃� + 1
4
�̂2!2n0

(

)Vl
) ̇̃�

)2
⎞

⎟

⎟

⎠

= −q1�̃2 − q2 ̇̃�2 − Δ�!2n0
⎛

⎜

⎜

⎝

(

�̃

2
√

�̂!n0
+
√

�̂!n0
)Vl
) ̇̃�

)2

−
�̃2

4�̂!2n0

⎞

⎟

⎟

⎠

− 2!2n0
⎛

⎜

⎜

⎝

(

�0
�̂!2n0

Δ� ̇̃� +
1
2
�̂!n0

)Vl
) ̇̃�

)2

−
�20

�̂2!4n0
Δ2�

̇̃�2
⎞

⎟

⎟

⎠

Thus

V̇l ≤ −
(

q1 −
1
4�̂

)

�̃2 −

(

q2 −
2�20
�̂2!2n0

)

̇̃�2

≤ −k� �̃2 − k� ̇̃�2. (26)

where k� ≜ q1 −
1
4�̂

> 0, and k� ≜ q2 −
2�20
�̂2!2n0

> 0.

Next, From Lemma. 2, Vl is positive definite. Thus, it satisfies

1
2
�̄
‖

‖

‖

‖

‖

[

�̃
̇̃�

]

‖

‖

‖

‖

‖

2

≥ Vl. (27)

From (26), it follows that

V̇l ≤ −min
{

k� , k�
}

‖

‖

‖

‖

‖

[

�̃
̇̃�

]

‖

‖

‖

‖

‖

2

.

Using (27) yields

V̇l ≤ −2
min

{

k� , k�
}

�̄
Vl.

Using the comparison lemma69 results in

Vl(t) ≤ Vl(0) exp

(

−2
min

{

k� , k�
}

�̄
t

)

.

5 NUMERICAL SIMULATION

5.1 Numerical design parameters
The high-level control design parameters are chosen such that the sufficient condition in (11) is satisfied. First, we should
find the lower and upper bound parameters cb, and cv. We know that the range of the wind speed in the full-load region is
11.4 m/s ≤ v ≤ 25 m/s and the rated rotor speed is !0 = 1.267 rad/sec . Next, we obtain the parametersm1,m2, andm3 in (4)
by solving an optimization problem constrained by (4) at the steady state condition at the operating point !n0 = 11.11 rad/sec ,
�0 = 0.6, and �0 = 19.94 deg. This gives m1 = 5.4184, m2 = 0.0682, m3 = 0.029. Consequently, the lower and upper bound
parameters are obtained as cb = 0.001, cv = 2.
Three different values of 
 (0.85, 0.9 and 1) are used to evaluate the performance of the designed high-level controller and

to asses how the values of 
 influence the robustness and control authority. The control gain k is fixed at k = 2500 and � is
calculated for each 
 such that the sufficient condition in (11) holds. Moreover,�0 = 1192.8 deg2, �̄ = 90 deg, �̄ = 24300 deg 2

are used for the sat function.
In the low-level loop, we consider high-air content fault changing the natural frequency and the damping ratio of the closed-

loop pitch actuator model to �a = 0.9, and !na = 3.42 rad/sec61. Consequently, we set �̂ = 0.1 rad2∕sec2, then the sufficient
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FIGURE 4 Input profiles

condition in (25) is satisfied by setting q1 > 2.5, q2 > 0.6. To obtain a good transient performance in response to the faults, we
choose sufficiently large values q1 = 25, and q2 = 1.

5.1.1 Simulation study
The proposed approach is implemented on a 5-MW-3-bladed-variable-pitch wind turbine using the FAST simulator. The results
are compared with an adaptive ISMC24, and a well-tuned PI-gain-scheduling controller developed by NREL58. Two scenarios
have been used to testify the controller. First, we consider a step-wind profile at different operating points. Then, an stochastic
wind profile is applied. Both scenarios include pitch actuator faults. Also, three different 
–s are used for the developed controller
to study its robustness.
Fig. 4 shows input signals, including a step wind profile, an stochastic wind profile, and a fault signal. The stochastic wind profile
generated by the TurbSim software70with 13 × 13 vertical and horizontal grid of IEC class A Kimal spectrum turbulence with
the mean speed of 22m∕s, and the turbulence intensity of T I = 19% (20 in the software) with the sample time of 0.05s, and
it shows that the generated stochastic wind profile covers the full-load region completely. In this paper, we consider the high-
air content actuator fault, which is linearly activated between 150sec-180sec, then fully activated between 180sec-220sec, and
linearly vanished between 220sec-250sec. Note that the fault is an active-low signal. Fig. 5 shows that the adaptive ISMC, and
especially the PI-gain-scheduling controller have huge oscillations when the wind speed changes, which causes negative spikes
in the electrical power for the latter. It shows that the generator torque for the PI-gain-scheduling controller goes to saturation
several times. Also, note that the developed controller with the lowest amount of gamma (
 = 0.85) has weaker transient
response in comparisonwith the higher ones, but its performance is still better than both the PI-gain-scheduling controller and the
adaptive ISMC. Also, the control authority shows that the proposed controller makes less control effort, while its performance
is significantly better than the other two controllers. Fig. 6 shows the rotor speed and the pitch angle under the incipient high-
air content fault, which mostly affects the PI-gain-scheduling controller and the adaptive ISMC. Notice that all controllers have
small oscillations in their steady state response due to the noise in the rotor speed. To testify the controller in a more realistic
situation, we use the stochastic wind profile shown in Fig. 4 along with the same pitch actuator fault’s scenario. Fig. 7 shows that
the PI-gain-scheduling controller has much more fluctuations in its rotor speed response compared with the adaptive ISMC. In
addition, the adaptive ISMC has big oscillations between 300s-400s, when the wind speed suddenly drops. Note that increasing
the gamma reduces the fluctuations for the developed controller. Also, it shows that the generator torque has been affected by
the oscillations in the rotor speed, and thereby the PI-gain-scheduling controller goes to saturation multiple times with negative
spikes in the electrical power. Note that because the high-air content is an incipient fault, its effect is not that distinguishable
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FIGURE 5 Rotor speed, control input, generator torque and electrical power subject to the step wind profile

FIGURE 6 Rotor speed and the pitch angle subject to the high-air content actuator fault and the step wind signal

under the stochastic wind signal. Table. 1 shows the root mean square (rms) of the error and the high-level control authority for
the adaptive ISMC, and the proposed controller with different gammas as a percentage of the PI-gain-scheduling controller as
the baseline control. It shows that the rms of the error in the rotor speed has been reduced to 57% using the adaptive ISMC, and
27% using the developed controller (with the biggest gamma) under the step wind signal. It also shows a reduction up to 48%
for the adaptive ISMC and to 27% for the proposed controller under the stochastic wind profile. However, the results show that
the rms of the control authority is almost the same. Moreover, it shows that the developed controller with the biggest gamma
has the biggest reduction in the rms of the error.
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FIGURE 7 Rotor speed, control input, generator torque and electrical power subject to the stochastic wind signal

Wind type Step Stochastic
Rms Error Control authority Error Control authority

Gain-Scheduled PI Controller 100% 100% 100% 100%
Adaptive ISMC 57% 100.1% 48% 101%

Proposed Controller (
 = 0.85) 55% 99.9% 44% 99.9%
Proposed Controller(
 = 0.9) 37% 100% 34% 100.1%
Proposed Controller(
 = 1) 27% 100% 27% 100.2%

TABLE 1 Rms of errors and control inputs related to the step wind signal

6 CONCLUSION

A two-layered control architecture was designed to robustly regulate the output of variable-pitch wind turbine subject to wind
variation and pitch actuator faults. The high-level control is a robust control using the concept of dissipativity to accommodate
system nonlinearity while mitigating the effect of wind disturbance on the rotor dynamics. The low-level design uses optimal
control to robustly mitigate the actuator faults while tracking the high-level commands with guaranteed performance. The simu-
lation results show that, although the controller is simple and easy to implement, compared to results in literature, it has a better
performance in dealing with model variation, the actuator fault, and wind disturbance.
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