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A B S T R A C T

Systematic attack design is essential to understanding the vulnerabilities of cyber–physical systems (CPSs), to
better design for resiliency. In particular, false data injection attacks (FDIAs) are well-known and have been
shown to be capable of bypassing bad data detection (BDD) while causing targeted biases in resulting state
estimates. However, their effectiveness against moving horizon estimators (MHE) is not well understood. In
fact, this paper shows that conventional FDIAs are generally ineffective against MHE. One of the main reasons
is that the moving window renders the static FDIA recursively infeasible. This paper proposes a new attack
methodology, moving-horizon FDIA (MH-FDIA), by considering both the performance of historical attacks and
the current system’s status. Theoretical guarantees for successful attack generation and recursive feasibility
are given. Numerical simulations on the IEEE-14 bus system further validate the theoretical claims and show
that the proposed MH-FDIA outperforms state-of-the-art counterparts in both stealthiness and effectiveness. In
addition, an experiment on a path-tracking control system of an autonomous vehicle shows the feasibility of
the MH-FDIA in real-world nonlinear systems.
. Introduction

The control of CPSs is generally a closed-loop feedback process,
n which the physical processes, measured by distributed sensors, are
riven by control actions depending on the accurate estimates of the
tate variables. However, the cyber layers are vulnerable to adversarial
ttacks, and the closed-loop interaction propagates the effect of the
nevitable attacks on the physical processes. Recent examples, such as
he malicious attacks on Israel’s water supply system (Brentan et al.,
021), the 2015 Ukraine blackout (Liang, Weller, Zhao, Luo, & Dong,
017) and the recent leakage of the Colonial Pipeline due to cyber-
ttacks (Reeder & Hall, 2021), indicate that cyberattacks can cause
evere consequences for CPS stakeholders. Developing resilient CPSs in
n adversarial setting has motivated researchers to study possible attack
trategies, such as denial of service (DoS) (Xu, Ma, Trappe, & Zhang,
006) and deception attacks (Pasqualetti, Dörfler, & Bullo, 2013).

False data injection attack (FDIA), most widely studied deception
ttack, follows a general attack strategy of maximizing the effectiveness
n the system behaviors while maintaining stealthiness (Pasqualetti
t al., 2013). Stealthiness measures the potential to bypass the bad
ata detection (BDD) (Hu, Wang, Han, & Liu, 2018), and effectiveness
easures the closeness to the intended degradation of system perfor-
ance (Zhang & Ye, 2020). Early researchers incorporated the full

ystem model into the maximization program to generate a feasible
ttack (Hu et al., 2018; Liu, Ning, & Reiter, 2011; Mo & Sinopoli,

∗ Corresponding author.
E-mail address: yzheng6@fsu.edu (Y. Zheng).

2010). This rendered the resulting process computationally inefficient
and less pragmatic FDIAs. The authors in Liu et al. (2011) studied
the FDIA generation problem against the least-square estimator (LSE)
with a residual-based BDD. The feasibility of FDIA against the Kalman
filter with 𝜒2 detector was studied in Mo and Sinopoli (2010). A
sufficient and necessary condition for insecure estimation under FDIA
was derived for the networked control system in Hu et al. (2018).
To develop more pragmatic attack generation strategies, several con-
straints are incorporated to capture the attacker limitations such as
limited access to sensors (Liu et al., 2011), incomplete knowledge of
system dynamics (Liu, Bao, Lu, & Li, 2015), and incomplete knowledge
of implemented state estimators (Lu & Yang, 2022). Data-driven ap-
proaches have also been used to generate FDIA in order to incorporate
constrained knowledge of system dynamics. Examples include super-
vised learning using existing small attack dataset (Mohammadpour-
fard, Ghanaatpishe, Mohammadi, Lakshminarayana, & Pechenizkiy,
2020), physics-guided unsupervised learning (Khazraei, Hallyburton,
Gao, Wang, & Pajic, 2022; Zheng, Sayghe, & Anubi, 2021). Some recent
results have streamlined their approach to generate feasible attack
that maintains stealthiness and ignored the effectiveness maximization
objectives, largely due to the inevitable nonconvexity which results in
computationally ineffective FDIAs at best (Sui, Mo, Marelli, Sun, & Fu,
2020).
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In this paper, we consider an additional perspective for the FDIA
generation problem: How does the attack history affect the feasibility
of the FDIA problem at the current time? In other words, is recur-
sive feasibility essential for FDIA problem? Moving-horizon estimation
(MHE) (Rawlings, Mayne, & Diehl, 2017) has been widely used in
different control systems and is being deployed in CPSs with lin-
ear/nonlinear dynamics, networked and distributed architectures (Zou,
Wang, Hu, & Han, 2020). One of the main design focuses of MHE is
how to guarantee feasibility over the next window given the solution in
the current window. This is called recursive feasibility (Löfberg, 2012;
Muske, Rawlings, & Lee, 1993). From this angle, MHE is inherently
more resilient than static counterparts since any successful FDIA against
MHE must themselves be recursively feasible. In this paper, we refer to
estimators designed with a window size of 1 as ‘‘static state estimators
(SSE)’’, and the FDIA designed to target those estimators as ‘‘static
FDIA’’. One of the main differences between SSE and MHE is in their
consideration of recursive feasibility. We show that static FDIAs have a
low chance of success against BDD built on MHE. Consequently, we pro-
pose a more general framework for moving-horizon FDIA (MH-FDIA)
design with consideration of recursive feasibility.

Contribution: As a result of the ineffectiveness of static FDIAs
against MHE, this paper studies a novel and more challenging, but
more pragmatic FDIA problem against MHE. The paper discusses the
limitations of various representative FDIA designs against MHE and
proposes an adaptive mechanism for generating provably successful
MH-FDIAs with consideration of recursive feasibility. The proposed so-
lution solves the problem directly without any heuristic simplification
or transformation. As a result, the proposed framework is general for
any combination of MHE and BDD considerations. Theoretical results
are validated based on an IEEE 14-bus system and a nonlinear path-
tracking control system of a wheeled mobile robot. Notably, to the best
knowledge of the authors, this paper is the first study of MH-FDIA with
consideration of recursive feasibility.

The remainder of the paper is organized as follows. In Section 2, the
notations employed are summarized. In Section 3, a concurrent system
model of the CPS, including linear physical model, MHE, and BDD, is
given for the subsequent development of the proposed FDIA scheme.
In Section 4, an MH-FDIA generation scheme is given as a feasibility
problem, and an adaptive algorithm is used to produce all feasible
FDIAs. In Section 5, the state-of-the-art MH-FDIA generation algorithm
is compared to a directed applied eigenvalue maximization approach.
The comparison is done via numerical simulation on an IEEE 14-bus
system and an experiment on a wheeled mobile robot. Conclusions
follow in Section 6.

2. Preliminary

We use R,R𝑛,R𝑚×𝑛 to denote Euclidean spaces of real scalars, 𝑛-
dimensional column vectors, and 𝑚×𝑛 matrix respectively. Normal-face
lower-case letters (𝑒.𝑔. 𝑥 ∈ R) are used to represent real scalars,
bold-face lower-case letters (𝑒.𝑔. 𝐱 ∈ R𝑛) represent vectors, while
normal-face upper-case letters (𝑒.𝑔. 𝑋 ∈ R𝑚×𝑛) represent matrices.

⊤ and 𝑋† denote the transpose and left pseudo-inverse of matrix 𝑋
espectively (𝑖.𝑒. 𝑋†𝑋 = 𝐼, (𝐼 − 𝑋𝑋†)𝑋 = 0). Let 𝑋 ∈ R𝑚×𝑛 (𝑚 < 𝑛)

be a full-ranked matrix, 𝑋⟂ denotes the orthogonal complement of 𝑋
(i.e. 𝑋⊤𝑋⟂ = 0 and [𝑋 𝑋⟂] is full-ranked). Let  ⊆ {1,… , 𝑚} be a set
of indices, then for a matrix 𝑋 ∈ R𝑚×𝑛, 𝑋 ∈ R| |×𝑛 is a sub-matrix
with the rows of 𝑋 corresponding to the indices in  . We use 𝜌(𝐴) to
denote the spectral radius of the matrix 𝐴.

We use 𝐱𝑖 and 𝐱(𝑖) to denote the vector 𝐱 at time instance 𝑖 and the
𝑖th elements of vector 𝐱 respectively. 𝐼𝑇 ≜ [𝑖−𝑇+1, 𝑖−𝑇+2,… , 𝑖] denotes

moving-window of fixed size 𝑇 at time instance 𝑖. The subscript 𝑇 will
e omitted if clear from the context. Accordingly, 𝐼𝑇 + 1(or 𝐼 + 1) ≜
𝑖− 𝑇 + 2, 𝑖− 𝑇 + 3,… , 𝑖+ 1] denotes the 𝑇 time window from 𝑖− 𝑇 + 2
o 𝑖 + 1, and 𝐼− ≜ [𝑖 − 𝑇 + 1, 𝑖 − 𝑇 + 2,… , 𝑖 − 1] denotes a history

⊤ ⊤ ⊤ ⊤ 𝑇𝑛
indow of size 𝑇 − 1. 𝐱𝐼 = [𝐱𝑖−𝑇+1, 𝐱𝑖−𝑇+2,… , 𝐱𝑖 ] ∈ R is a column c

2

ector composed of vector 𝐱𝑗 ∈ R𝑛 for all 𝑗 ∈ 𝐼 . If a continuous
function 𝜙 ∶ [0, 𝑎] → [0,∞) is monotonously increasing and satisfies
𝜙(0) = 0, then we say 𝜙 belongs to class 𝜅. The complement of a set 
is denoted by ̄ (or 𝑐). The support of a vector 𝐱 ∈ R𝑛 is defined as
𝗌𝗎𝗉𝗉(𝐱) ≜ {𝑖 ⊆ {1,… , 𝑛}|𝐱(𝑖) ≠ 0}. 𝛴𝑘 ≜ {𝐱 ∈ R𝑛 ∥ 𝗌𝗎𝗉𝗉(𝐱)| ≤ 𝑘} denotes
the set of 𝑘-sparse vectors. 𝐱𝐼 ∈ 𝛴𝑘 means all component vectors are
𝑘-sparse. Given a matrix 𝑋 ∈ R𝑚×𝑛 and a support  , we say 𝑋 ∈ 𝛴𝑘
if each row of 𝑋 belongs to 𝛴𝑘. We use the symbol ⊗ to denote the
Kronecker product, i.e. for 𝐵 ∈ R𝑚×𝑛,
[

𝑎11 𝑎12
𝑎21 𝑎22

]

⊗𝐵 =
[

𝑎11𝐵 𝑎12𝐵
𝑎21𝐵 𝑎22𝐵

]

∈ R2 𝑚×2𝑛.

3. Problem formulation

Consider a nonlinear model used to describe the underlying physical
processes of CPS

�̇� = 𝑓 (𝐱,𝐮)
𝐲 = 𝑔(𝐱) + 𝐯,

(1)

where 𝐱 ∈ R𝑛, 𝐲 ∈ R𝑚, 𝐯 ∈ R𝑚 are the internal state variables, sensor
measurements, and noise. 𝑓 and 𝑔 are assumed lipschitz in 𝐱 and 𝐮.
Given an equilibrium point (𝐱0,𝐮0) and a fixed time step1 𝑇𝑠, a discrete
linear time-invariant (LTI) model is used to approximate the dynamics
of the physical plant around the equilibrium point:

𝛥𝐱𝑖+1 = 𝐴′𝛥𝐱𝑖 + 𝐵′𝛥𝐮𝑖,
𝐲𝑖 = 𝐶𝛥𝐱𝑖 + 𝐯𝑖,

(2)

where 𝛥𝐱𝑖 = 𝐱𝑖 − 𝐱0, 𝛥𝐮𝑖 = 𝐮𝑖 − 𝐮0, and

𝐴′ =
𝜕𝑓
𝜕𝐱

|

|

|

|(𝐱0 ,𝐮0)
𝑇𝑠 + 𝐼𝑛, 𝐵′ =

𝜕𝑓
𝜕𝐮

|

|

|

|(𝐱0 ,𝐮0)
𝑇𝑠, 𝐶 =

𝜕𝑔
𝜕𝐱

|

|

|

|𝐱0
.

Consider a stable controller 𝛥𝐮𝑖 = 𝐾𝛥𝐱𝑖, where 𝐾 is designed properly
to achieve lim

𝑖→∞
‖𝛥𝐱𝑖‖ = 0. Then we study the attack design for the system

at the stable equilibrium points. Consequently, the following closed-
form dynamical model is used throughout the subsequent development:

𝐱𝑖+1 = 𝐴𝐱𝑖,
𝐲𝑖 = 𝐶𝐱𝑖 + 𝐯𝑖,

(3)

here 𝐴 = 𝐴′ + 𝐵′𝐾 is stable. For the sake of clean presentation, we
ake the abuse of 𝐱𝑖 as 𝛥𝐱𝑖 in the model (3). Then the measurement
odel on the window 𝐼 is given by

𝐼 = 𝐻𝐱𝑖 + 𝐯𝐼 , (4)

here 𝐻 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐶𝐴1−𝑇

𝐶𝐴2−𝑇

⋮
𝐶

⎤

⎥

⎥

⎥

⎥

⎦

is a backward observation matrix and 𝐲𝐼 =

𝐲⊤𝑖−𝑇+1 𝐲⊤𝑖−𝑇+2 ⋯ 𝐲⊤𝑖 ]
⊤ ∈ R𝑚𝑇 , 𝐯𝐼 ∈ R𝑇𝑚 are the horizontal mea-

urement vector and the noise vector, respectively, in the window 𝐼 .
he following widely used assumptions are made for the system model
bove:

1. The CPS (3) is asymptotically stable: 0 < 𝜌(𝐴) < 1.
2. The pair (𝐶,𝐴−1) is observable: 𝗋𝖺𝗇𝗄(𝐻) = 𝑛.
3. The noise is bounded: ‖𝐯𝐼‖2 ≤ 𝜀𝑣, for a known constant 𝜀𝑣 > 0.

Consequently, we start to discuss the MHE and bad data detector
BDD) used in this paper. Given the measurement model in (4), MHE
eeks to obtain an estimate of the state vector 𝐱𝑖 from the most recent

measurements in the window 𝐼 .

1 The physical processes interact with the cyber components operating in
iscrete time intervals, so researchers often use discrete model for studies of
ontrol and estimation in CPS (Weerakkody, Ozel, Mo, Sinopoli, et al., 2019).
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Definition 1 (Moving-Horizon Estimator, MHE Allan & Rawlings, 2019;
Rao, Rawlings, & Mayne, 2003). A moving-horizon estimator is an
operator of the form  ∶ R𝑇𝑚 → R𝑛 which returns an estimate of
the state vector from 𝑇 -horizon observation. Moreover,  is said to be
stable if there exists 𝜏0, 𝜀0 < ∞ such that

‖(𝐲𝐼 ) − 𝐱𝑖‖2 ≤ 𝜏0‖𝐱𝑖‖2 + 𝜀0, (5)

for all 𝑖 > 0.

Remark 1. For 𝓁2 MHE, 2 is a linear function of 𝐲𝐼 and given by:

2(𝐲𝐼 ) ≜ arg min
𝐱

‖𝐲𝐼 −𝐻𝐱‖2 = 𝐻†𝐲𝐼 . (6)

As MHE estimates the states from the measurements of window
𝐼 , BDD monitors the state estimation process to detect any malicious
inputs. It is often designed based on the residual ‖𝐲𝐼 −𝐻(𝐲𝐼 )‖𝑝, 0 <
𝑝 ≤ ∞. 𝑝 = 2 is commonly used (Liu et al., 2011; Mo & Sinopoli, 2010).
𝑝 = 1 and 𝑝 = ∞ have also been used (Kosut, Jia, Thomas, & Tong,
2010). The BDD considered in this paper is based on the 𝓁2 MHE in
(6).

Definition 2 (Bad Data Detector, BDD). Consider the MHE in (6) and
the measurement model in (4). Given a threshold 𝛿 > 0, a bad data
etector is a discriminator given by

𝖣𝖣(𝐲𝐼 ) =
{

1 𝑖𝑓 ‖

‖

𝐲𝐼 −𝐻2(𝐲𝐼 )‖‖2 > 𝛿,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(7)

Next, we discuss the ineffectiveness of static FDIA designs (Liu et al.,
2011; Pasqualetti et al., 2013) against the MHE in (6) and the basic BDD
in (7).

1. The original FDIA design strategy is to define the attack 𝐞𝑖 on the
range space of the measurement matrix 𝐶, i.e. 𝐞𝑖 = 𝐶𝐚𝑖, where 𝐚𝑖
is an arbitrary signal. We call this type of FDIA a perfect stealth
attack against static 𝓁2 estimator since the detection residual is
zero:

‖𝐲𝑖 + 𝐞𝑖 − 𝐶𝐶†(𝐲𝑖 + 𝐞𝑖)‖2 = ‖(𝐼 − 𝐶𝐶†)𝐶(𝐱𝑖 + 𝐚𝑖)‖2 = 0.

Here we ignore the noise 𝐯𝑖 in the model (3). However, under the
MHE, 𝐲𝐼 = 𝐻𝐱𝑖 + (𝐼𝑇 ⊗ 𝐶)𝐚𝐼 , where 𝐚𝐼 =

[

𝐚⊤𝑖−𝑇+1, ⋯ , 𝐚⊤𝑖
]⊤

,
then the residual is

‖

‖

𝐲𝐼 −𝐻2(𝐲𝐼 )‖‖2 = ‖(𝐼 −𝐻𝐻†)𝐲𝐼‖2
= ‖(𝐼 −𝐻𝐻†)(𝐼𝑇 ⊗𝐶)𝐚𝐼‖2

Notice the second equality follows from (𝐼 − 𝐻𝐻†)𝐻 = 0. It is
clear that 𝗌𝗉𝖺𝗇(𝐼𝑇 ⊗𝐶) ∩ 𝗋𝖺𝗇𝗀𝖾(𝐻) ≠ ∅ is not guaranteed. In fact,
if 𝐻 has full column rank, the above holds if and only if 𝐴 = 𝛽𝐼
for some 𝛽 ∈ R. In other words, static FDIA is effective against
MHE if and only if the states of CPS are completely decoupled.

2. Another well-known design is a generalized stealth FDIA (Liu
et al., 2011) which is given by the following program:

𝖬𝖺𝗑𝗂𝗆𝗂𝗓𝖾 ∶
𝐞𝑖

‖2(𝐲𝑖) −2(𝐲𝑖 + 𝐞𝑖)‖2,

𝖲𝗎𝖻𝗃𝖾𝖼𝗍𝗍𝗈 ∶ ‖𝐲𝑖 + 𝐞𝑖 − 𝐶2(𝐲𝑖 + 𝐞𝑖)‖2 ≤ 𝛿∕𝑇 .
(8)

Considering the system model in (3) without noise, the con-
straint in (8) is equivalent to ‖(𝐼 − 𝐶𝐶†)𝐞𝑖‖2 ≤ 𝛿∕𝑇 which does
not guarantee that ‖(𝐼 −𝐻𝐻†)𝐞𝐼‖2 ≤ 𝛿.

3. Consider the case where the static design is done using 𝐻 instead
of 𝐶, for example, 𝑒𝐼 = 𝐻𝐚𝐼 . Here the conflict arises when the
time window moves to 𝐼+1. The design has to guarantee that the
attack vector is consistent from window to window. This renders
the static design infeasible for the moving-horizon estimator.

Consequently, a moving-horizon FDIA design is needed against MHE

with consideration for recursive feasibility.

3

4. Moving-horizon FDIA design

In this section, we start with a definition of successful FDIA, then
develop the proposed MH-FDIA. The recursive feasibility of the moving-
horizon schemes is also analyzed. The following assumptions on the
attacks are widely used (Liu et al., 2011; Mo & Sinopoli, 2010):

1. The attacker has limited access to sensors; 𝐞𝑖 ∈ 𝛴𝑘 for some
𝑘 < 𝑚.

2. The attacker can inject arbitrary values on compromised sensors.
3. The attacker will not abandon compromised sensors or gain

access to more sensors at runtime. Thus, the attack support is
time-invariant (̇ = 0).

Henceforth, we denote the support of the attack sequence for the time-
horizon 𝐼 by 𝐼 = [ ⊤, 𝑚 +  ⊤,… , (𝑇 − 1)𝑚 +  ⊤]⊤, and 𝐼− is defined
accordingly. Next, we formalize the attack performance criteria used in
this paper.

Definition 3 (Successful FDIA Sui et al., 2020; Zheng & Anubi, 2021).
Given the estimator-detector pair

(

2(𝐲𝐼 ),𝖡𝖣𝖣(𝐲𝐼 )
)

in (6) and (7)
respectively, the attack vector 𝐞𝐼 ∈ 𝛴𝑘 is said to be (𝛼, 𝜖)-successful
if the following hold:

‖2(𝐲𝐼 ) −2(𝐲𝐼 + 𝐞𝐼 )‖2 ≥ 𝛼, ‖𝐲𝐼 + 𝐞𝐼 −𝐻2(𝐲𝐼 + 𝐞𝐼 )‖2 ≤ 𝜖. (9)

In accordance with common usage in the literature (Khazraei et al.,
022; Liu et al., 2011; Mo & Sinopoli, 2010; Pasqualetti et al., 2013;
heng & Anubi, 2021), we adopt two metrics to evaluate the effec-
iveness and stealthiness of the attack. To quantify the effectiveness,
e use the estimation error ‖(𝐲𝐼 ) − (𝐲𝐼 + 𝐞𝐼 )‖2. To quantify the

tealthiness, we use the estimation residual ‖𝐲𝐼 + 𝐞𝐼 − 𝐻(𝐲𝐼 + 𝐞𝐼 )‖2,
ince the estimation process is the primary target of sensor attacks. If
he estimation result could be spoofed without triggering an alarm, the
orresponding control action is then manipulated maliciously, causing
therwise stable controller to drive the system to an undesired state.

emark 2. Without loss of generality, we assume that 𝗌𝗎𝗉𝗉(𝐞𝑖) ∩
𝗎𝗉𝗉(𝐯𝑖) = ∅. Whenever 𝗌𝗎𝗉𝗉(𝐞𝑖) ∩ 𝗌𝗎𝗉𝗉(𝐯𝑖) ≠ ∅, one could redefine a
ew attack vector 𝐞𝑖 + 𝐯𝑖𝗌𝗎𝗉𝗉(𝐞𝑖 ) and new noise vector 𝐯𝑖

𝗌𝗎𝗉𝗉(𝐞𝑖 )
that will

atisfy this assumption.

emark 3. Given an attack history 𝐞𝐼− = [𝐞⊤𝑖−𝑇+1, 𝐞
⊤
𝑖−𝑇+2,… , 𝐞⊤𝑖−1]

⊤, the
DIA 𝐞𝑖 at time instance 𝑖 is said to be (𝛼, 𝜖)-successful if 𝐞𝐼 = [𝐞⊤𝐼− , 𝐞

⊤
𝑖 ]

⊤

atisfies the conditions in (9).

Next, since we target an 𝓁2 MHE in (6), the conditions in (9) reduces
o

𝐻†𝐞𝐼‖2 ≥ 𝛼, ‖(𝐼 −𝐻𝐻†)
(

𝐲𝐼 + 𝐞𝐼
)

‖2 ≤ 𝜖. (10)

he second inequality can further be simplified as follows:

(𝐼 −𝐻𝐻†)
(

𝐲𝐼 + 𝐞𝐼
)

‖2 = ‖(𝐼 −𝐻𝐻†)
(

𝐻𝐱𝑖 + 𝐯𝐼 + 𝐞𝐼
)

‖2

= ‖(𝐼 −𝐻𝐻†)
(

𝐯𝐼 + 𝐞𝐼
)

‖2 ≤ 𝜖.

ow, since ‖(𝐼 − 𝐻𝐻†)𝐯𝐼‖2 ≤ 𝜖𝑣, using the assumption in Remark 2,
he following conditions are sufficient for the (𝛼, 𝜖) criteria in (9):

𝐻†𝐞𝐼‖2 ≥ 𝛼, ‖(𝐼 −𝐻𝐻†)𝐞𝐼‖2 ≤
√

𝜖2 − 𝜖2𝑣 ≜ 𝜖. (11)

et 𝐻 admit the singular value decomposition

=
[

𝑈1 𝑈2
]

[

𝛴
0

]

𝑉 ⊤,

here 𝑈1 ∈ R𝑇𝑚×𝑛, 𝑈2 ∈ R𝑇𝑚×(𝑇𝑚−𝑛), 𝛴 ∈ R𝑛×𝑛 is a diagonal matrix
composed of all non-zeros singular values and 𝑉 ∈ R𝑛×𝑛. The next result
gives a parameterization of successful MH-FDIAs that will be used for

subsequent design.
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Proposition 1. Given 𝐰1 ∈ R𝑛,𝐰2 ∈ R𝑚𝑇−𝑛, the moving-horizon FDIA
vector given by

𝐞𝐼 = 𝑈1𝛴𝐰1 + 𝑈2𝐰2 (12)

is (‖𝐰1‖2, ‖𝐰2‖2)-successful against the estimator-detector pair
(

(𝐲𝐼 ),
𝖡𝖣𝖣(𝐲𝐼 )

)

in (5) and (7).

Proof. Since 𝐻 is full-ranked, 𝛴 is invertible. It follows then that
𝐻† = 𝑉 𝛴−1𝑈⊤

1 and 𝐼 −𝐻𝐻† = 𝐼 − 𝑈1𝑈⊤
1 = 𝑈2𝑈⊤

2 . Then,

‖𝐻†𝐞𝐼‖2 = ‖𝑉 𝛴−1𝑈⊤
1 (𝑈1𝛴𝐰1 + 𝑈2𝐰2)‖2

= ‖𝑉 𝐰1‖2 = ‖𝐰1‖2,

and
‖(𝐼 −𝐻𝐻†)𝐞𝐼‖2 = ‖𝑈2𝑈

⊤
2 (𝑈1𝛴𝐰1 + 𝑈2𝐰2)‖2

= ‖𝑈2𝐰2‖2 = ‖𝐰2‖2.

Thus 𝐞𝐼 is (‖𝐰1‖2, ‖𝐰2‖2)-successful. □

Thus far, we have obtained a structure for a successful FDIA, as
defined in (12), for a static window of length 𝑇 . However, this structure
can only ensure static feasibility for the current time window. Next, we
derive conditions for recursive feasibility as the observation window
moves. At time 𝑖, the attackers know their injected historical attacks
𝐞𝐼− , then, according to (12), the goal at the current time 𝑖 is to find
𝐞𝑖 ∈ R𝑚 such that
[

𝐞𝐼−
𝐞𝑖

]

= 𝑈1𝛴𝐰1 + 𝑈2𝐰2 (13)

for some 𝐰1 ∈ R𝑛 with ‖𝐰1‖2 ≥ 𝛼 and 𝐰2 ∈ R𝑇𝑚−𝑛 with ‖𝐰2‖2 ≤ 𝜖.
It is challenging to specify a priori the values of 𝛼 and 𝜖 that can
guarantee the condition above for all time. Fortunately, for the purpose
of this paper, we regard the stealthiness of the resulting attack signal
more important than its effectiveness. Thus, we employ the strategy
of pre-specifying 𝜖, then obtaining a time-varying bias 𝛼 by searching
for 𝐰1 whose norm is as big as we can guarantee while satisfying the
constraint ‖𝐰2‖2 ≤ 𝜖. Let

𝐰−
1 = 𝛴−1𝑈⊤

1

[

𝐞𝐼−
𝟎

]

, 𝐰−
2 = 𝑈⊤

2

[

𝐞𝐼−
𝟎

]

, (14)

then
[

𝐞𝐼−
𝟎

]

= 𝑈1𝛴𝐰−
1 + 𝑈2𝐰−

2 . Consequently, we seek vectors 𝐳1 ∈ R𝑛

and 𝐳2 ∈ R𝑇𝑚−𝑛 that satisfy:

𝗌𝗎𝗉𝗉(𝑈1𝛴𝐳1 + 𝑈2𝐳2) = (𝑇 − 1)𝑚 +  ≜ ̄ , (15)

and ‖

‖

‖

𝐳2 + 𝐰−
2
‖

‖

‖2
≤ 𝜖, (16)

where ̄ is the support of
[

𝟎
𝐞𝑖

]

. Thus far, we obtain a parameterization

of the attack at the current time
[

𝟎
𝐞𝑖

]

≜ 𝑈1𝛴𝐳1+𝑈2𝐳2. If 𝐳1 and 𝐳2 satisfy

the conditions in (15) and (16), then, according to Remark 3, 𝐞𝑖 is (𝛼, 𝜖)-
successful with the historical attacks 𝐞𝐼− . In other words, the attack 𝐞𝑖
maintains the recursive feasibility when the observation window moves
from 𝐼 − 1 to 𝐼 .

Next, let 𝑁 =
[

𝑁1
𝑁2

]

be a matrix in the null space of
[

𝑈1𝛴 𝑈2
]

̄ 𝑐

such that
[

𝑈1̄ 𝑐 𝛴 𝑈2̄ 𝑐

]

𝑁 = 𝑈1̄ 𝑐 𝛴𝑁1 + 𝑈2̄ 𝑐 𝑁2 = 0, (17)

then the inequality constraint in (16) is equivalent to

‖𝑁2𝐯 + 𝐰−
2 ‖2 ≤ 𝜖, (18)

for some vector 𝐯 since 𝐳2 must be in the range space of 𝑁2. The next
result gives a necessary and sufficient condition for (18).

Proposition 2. The inequality in (18) is feasible if and only if

‖𝑁⟂⊤𝐰−
‖ ≤ 𝜖. (19)
2 2 2

4

Proof. Using the identity,2 𝑁2𝑁
†
2 +𝑁⟂

2 𝑁
⟂
2
⊤ = 𝐼 , it follows that:

‖𝑁2𝐯 + 𝐰−
2 ‖

2
2 = ‖𝑁2(𝐯 +𝑁†

2𝐰
−
2 ) +𝑁⟂

2 𝑁
⟂⊤

2 𝐰−
2 ‖

2
2

= ‖𝑁2(𝐯 +𝑁†
2𝐰

−
2 )‖

2
2 + ‖𝑁⟂

2 𝑁
⟂⊤

2 𝐰−
2 ‖

2
2

= ‖𝑁2(𝐯 +𝑁†
2𝐰

−
2 )‖

2
2 + ‖𝑁⟂⊤

2 𝐰−
2 ‖

2
2.

Thus, min𝐯‖𝑁2𝐯+𝐰−
2 ‖2 = ‖𝑁⟂⊤

2 𝐰−
2 ‖2. The result follows by noting that

the inequality in (18) is feasible if and only if min𝐯 ‖𝑁2𝐯+𝐰−
2 ‖2 ≤ 𝜖. □

Remark 4. The above proposition gives the condition for the existence
of a feasible attack vector 𝐞𝑖 ∈ R𝑚, at time 𝑖, as
‖

‖

‖

‖

‖

𝑁⟂⊤

2 𝑈𝑇
2

[

𝐞𝐼−
𝟎

]

‖

‖

‖

‖

‖2
⩽ 𝜖. (20)

If, at the current instant, this condition is violated, we simply set 𝐞𝑖 = 𝟎.
Alternatively, the condition in (20) can also be used with 𝐞(𝐼+1)− to
establish recursive feasibility for the next time instant.

For each 𝐯 satisfying (18),

𝛼(𝐯) = ‖𝑁1𝐯 + 𝐰−
1 ‖2 (21)

is the corresponding effectiveness (state bias) induced by the attack
vector

𝐞𝐼 =
[

𝐞𝐼−
𝐞𝑖

]

= 𝑈1𝛴(𝐰−
1 +𝑁1𝐯) + 𝑈2(𝐰−

2 +𝑁2𝐯). (22)

Next, we develop an iterative scheme to improve the effectiveness
𝛼(𝐯) while satisfying the stealthiness condition in (18). Given a vector
𝐯𝑘 satisfying (18) and a positive constant 𝜆, let

𝐝𝑘 =

⎧

⎪

⎨

⎪

⎩

𝑁⊤
1 (𝑁1𝐯𝑘+𝐰−

1 )

‖𝑁⊤
1 (𝑁1𝐯𝑘+𝐰−

1 )‖2
, if ‖𝑁⊤

1 (𝑁1𝐯𝑘 + 𝐰−
1 )‖2 ≥ 𝜏,

𝑁⊤
1 (𝑁1𝐯𝑘 + 𝐰−

1 ), otherwise,

(23)

𝑘 = 𝑁2𝐯𝑘 + 𝐰−
2 , �̂�𝑘 =

𝑁2𝐝𝑘
‖𝑁2𝐝𝑘‖2

, (24)

𝜆𝑘 =

⎧

⎪

⎨

⎪

⎩

𝜆, if ‖𝐫𝑘 + 𝜆𝑁2𝐝𝑘‖2 ≤ 𝜖,

−𝐫⊤𝑘 �̂�𝑘+
√

(𝐫⊤𝑘 �̂�𝑘)
2−‖𝐫𝑘‖22+𝜖

2

‖𝑁2𝐝𝑘‖2
, otherwise,

(25)

then the update law on 𝐯𝑘 is given by

𝐯𝑘+1 = 𝐯𝑘 + 𝜆𝑘𝐝𝑘, (26)

here 𝜏 is a pre-defined zero-tolerance value.

heorem 4.1. For the update law in (26), the followings hold:

1. 𝐯𝑘+1 satisfies the constraint in (18);
2. 𝛼(𝐯𝑘+1) ≥ 𝛼(𝐯𝑘).

roof. (1) According to (26), it follows

‖𝑁2𝐯𝑘+1 + 𝐰−
2 ‖

2
2 = ‖𝑁2𝐯𝑘 + 𝐰−

2 + 𝜆𝑘𝑁2𝐝𝑘‖22
= ‖𝐫𝑘 + 𝜆𝑘𝑁2𝐝𝑘‖22
= 𝜆2𝑘‖𝑁2𝐝𝑘‖22 + 2𝜆𝑘𝐫⊤𝑘 𝑁2𝐝𝑘 + ‖𝐫𝑘‖22

(27)

According to (25), the two choices for 𝜆𝑘 imply that either 𝜆𝑘 = 𝜆,
which implies that

‖𝐫𝑘 + 𝜆𝑁2𝐝𝑘‖2 ≤ 𝜖,

or 𝜆𝑘 =
−𝐫⊤𝑘 �̂�𝑘+

√

(𝐫⊤𝑘 �̂�𝑘)
2−‖𝐫𝑘‖22+𝜖

2

‖𝑁2𝐝𝑘‖2
, then substituting it into (27) yields

𝜆2𝑘‖𝑁2𝐝𝑘‖22 + 2𝜆𝑘𝐫⊤𝑘 𝑁2𝐝𝑘 + ‖𝐫𝑘‖22 = 𝜖2, (28)

2 Since 𝑁2 is defined by Eq. (17) one could assume, without loss of
generality, that the columns of 𝑁 are orthogonal. Thus, 𝑁⊤ = 𝑁†.
2 2 2
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which also implies that

‖𝐫𝑘 + 𝜆𝑘𝑁2𝐝𝑘‖2 ≤ 𝜖.

(2) By following (21) and (26),

(𝐯𝑘+1) = ‖𝑁1𝐯𝑘+1 + 𝐰−
1 ‖2

= ‖𝑁1𝐯𝑘 + 𝐰−
1 + 𝜆𝑘𝑁1𝐝𝑘‖2.

If ‖𝑁⊤
1 (𝑁1𝐯𝑘 +𝐰−

1 )‖2 ≥ 𝜏, then, according to (23), 𝐝𝑘 =
𝑁⊤

1 (𝑁1𝐯𝑘+𝐰−
1 )

‖𝑁⊤
1 (𝑁1𝐯𝑘+𝐰−

1 )‖2
.

Thus,

𝛼(𝐯𝑘+1) =
‖

‖

‖

‖

‖

𝑁1𝐯𝑘 + 𝐰−
1 + 𝜆𝑘

𝑁1𝑁⊤
1 (𝑁1𝐯𝑘 + 𝐰−

1 )

‖𝑁⊤
1 (𝑁1𝐯𝑘 + 𝐰−

1 )‖2

‖

‖

‖

‖

‖2

=
‖

‖

‖

‖

‖

‖

(

𝐼 +
𝜆𝑘𝑁1𝑁⊤

1

‖𝑁⊤
1 (𝑁1𝐯𝑘 + 𝐰−

1 )‖2

)

(𝑁1𝐯𝑘 + 𝐰−
1 )
‖

‖

‖

‖

‖

‖2

≥ 𝜎

(

𝐼 +
𝜆𝑘𝑁1𝑁⊤

1

‖𝑁⊤
1 (𝑁1𝐯𝑘 + 𝐰−

1 )‖2

)

𝛼(𝐯𝑘) ≥ 𝛼(𝐯𝑘).

If ‖𝑁⊤
1 (𝑁1𝐯𝑘+𝐰−

1 )‖2 < 𝜏, then, according to (23), 𝐝𝑘 = 𝑁⊤
1 (𝑁1𝐯𝑘+𝐰−

1 ).
Thus,

𝛼(𝐯𝑘+1) = ‖𝑁1𝐯𝑘 + 𝐰−
1 + 𝜆𝑘𝑁1𝑁

⊤
1 (𝑁1𝐯𝑘 + 𝐰−

1 )‖2
= ‖(𝐼 + 𝜆𝑘𝑁1𝑁

⊤
1 )(𝑁1𝐯𝑘 + 𝐰−

1 )‖2
≥ 𝜎(𝐼 + 𝜆𝑘𝑁1𝑁

⊤
1 )𝛼(𝐯𝑘)

≥ 𝛼(𝐯𝑘).

where 𝜎(𝐼 +𝜆𝑘𝑁1𝑁⊤
1 ) is the smallest singular value of 𝐼 +𝜆𝑘𝑁1𝑁⊤

1 that
ust be bigger than 1. □

emark 5. For 𝑇 = 1, the MH-FDIA problem reduces to the classic
DIA problem,

𝖬𝖺𝗑𝗂𝗆𝗂𝗓𝖾 ‖𝑁1𝐯‖2
𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 ‖𝑁2𝐯‖2 ≤ 𝜖

(29)

or which numerous results exist in the literature using different relax-
tion techniques (Liu et al., 2011) or an approximate direct solution
o the non-convex problem using learning-based approaches (Khazraei,
allyburton, Gao, Wang, & Pajic, 2021).

The first conclusion in Theorem 4.1 indicates that (18), which is
he constraint for guaranteeing recursive feasibility, can always be
et during the iterative procedure. The proposed MH-FDIA scheme is

ummarized in Algorithm 1.

Algorithm 1 Moving-horizon FDIA
Parameters: 𝜏, 𝑈1, 𝑈2, 𝑁1, 𝑁2, 𝛴, 𝜖,𝑀 .
. Input historical attacks 𝐞𝐼− .

I. 𝐰−
1 = 𝛴−1𝑈⊤

1

[

𝐞𝐼−
𝟎

]

, 𝐰−
2 = 𝑈⊤

2

[

𝐞𝐼−
𝟎

]

.

II. Suggest and improve bias update: Set 𝐯1 = −𝑁†
2𝐰

−
2

or 𝑘 = 1 ∶ 𝑀 + 1
𝐯𝑘+1 = 𝐯𝑘 + 𝜆𝑘, where 𝜆𝑘,𝐝𝑘 are given in (25) and (23).

nd
V. Output current attack vector 𝐞𝑖 = 𝑈12𝛴(𝐰−

1 + 𝑁1𝐯𝑀 ) + 𝑈22(𝐰−
2 +

𝑁2𝐯𝑀 ).

In addition, a conceptual visualization of the Algorithm 1 in 3𝐷
space is shown in Fig. 1. In this space, the constraint in (18) could
be seen as an ellipsoid. The algorithm searches for a direction that
increases the effectiveness 𝛼 at each iterative step. Furthermore, the
pdate law for step size 𝜆 in (25) ensures that the algorithm eventually
erminates on the boundary at time step 𝑀 , as proved in (28).
5

Fig. 1. A conceptual visualization of the Algorithm 1 for a 3 dimensional problem.

Fig. 2. Schematic description of the simulation of MH-FDIA on the IEEE 14-bus system.

5. Simulation and experiment

In this section, we validate the efficacy of the MH-FDIA using two
case studies: a simulation of a linear regulation control system of the
IEEE 14-bus network, and an experiment of a nonlinear path-following
control system of a wheeled mobile robot (WMR). Firstly, we validate
the theoretical performance of the MH-FDIA and analyze the influ-
ence of the parameters of Algorithm 1 on the MH-FDIA’s performance
using the linear bus system simulation. Through the nonlinear WMR
experiment, we showcase the implementation of the proposed MH-FDIA
on a nonlinear system and demonstrate its seamless performance in
real-world scenarios.

5.1. Simulation: IEEE 14-bus system

In this subsection, the MH-FDIA was implemented on an IEEE 14-
bus system with a moving-horizon least-square observer and a residual-
based BDD, as shown in Fig. 2. The MH-FDIA was compared with
conventional FDIA designs in the literature.

A small signal model is constructed by linearizing the generator
swing and power flow equations around the operating point (Scholtz,
2004). In order to perform linearization, we assume that voltage is
tightly controlled at its nominal value; the angular difference between
each bus is small; and conductance is negligible therefore the system is
lossless.

By ordering the buses such that the generator nodes appear first,
the admittance-weighted Laplacian matrix can be expressed as 𝐿 =
[

𝐿𝑔𝑔 𝐿𝑙𝑔
]

∈ R𝑁×𝑁 , where 𝑁 = 𝑛𝑔 + 𝑛𝑏 with 𝑛𝑔 = 5, 𝑛𝑏 = 14. Then,

𝐿𝑔𝑙 𝐿𝑙𝑙
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Fig. 3. A comparison of effectiveness and stealthiness of the static 𝓁2 FDIA designed
in Liu et al. (2011) and the static form of the proposed MH-FDIA against Luenberger
observer. (The effectiveness is given by the resulting state estimation error ‖𝐷2(𝐲𝐼 ) −

2(𝐲𝐼 + 𝐞𝐼 )‖2. Red dot line is the threshold of stealthiness, it is 0.0318 for one time
tep.).

y linearizing the dynamical swing equations and algebraic DC power
low equations, we obtain (Zheng & Anubi, 2022)

�̇� =
[

0 𝐼
−𝑀−1(𝐿𝑔𝑔 − 𝐿𝑔𝑙𝐿−1

𝑙𝑙 𝐿𝑙𝑔) −𝑀−1𝐷𝑔

]

𝐱

+
[

0 0
𝑀−1 −𝑀−1𝐿𝑔𝑙𝐿−1

𝑙𝑙

]

𝐮,

𝐲 =
[

0 𝐼
−𝑃𝑛𝑜𝑑𝑒𝐿−1

𝑙𝑙 𝐿𝑙𝑔 0

]

𝐱 +
[

0 0
𝑃𝑛𝑜𝑑𝑒𝐿−1

𝑙𝑙 0

]

𝐮,

= − 𝐿−1
𝑙𝑙 (𝐿𝑙𝑔𝛿 − 𝑃𝑑 ),

(30)

here the state variables 𝐱 = [𝛿⊤ 𝜔⊤]⊤ ∈ R2𝑛𝑔 contain the gener-
tor rotor angles 𝛿 ∈ R𝑛𝑔 and the generator frequency 𝜔 ∈ R𝑛𝑔 .
he measurements 𝐲 = [𝜔⊤ 𝑃⊤

𝑛𝑒𝑡]
⊤ ∈ R𝑛𝑔+𝑛𝑏 contain the generator

requency 𝜔 ∈ R𝑛𝑔 and the net power injected at the buses 𝑃𝑛𝑒𝑡 ∈
𝑛𝑏 . 𝑀 is a diagonal matrix of inertial constants for each generator
nd 𝐷𝑔 is a diagonal matrix of damping coefficients. The stealthiness
hreshold is set as 5% of the maximal nominal measurement value
𝑖 = 0.05max(‖𝐲‖2) = 0.0318 for each time step, so the stealthiness
hreshold for 𝑇 -time horizon is 𝜖 = 𝑇 𝜖𝑖 = 0.6352. The fixed attack
upport is  = {1, 2, 9, 11, 12, 16, 17} (about 37% of total measurements).
he simulation sampling time is set as 𝑇𝑠 = 0.01 s, and the start time
or attack injection is 1.8 s.

Assuming the attacker has the full knowledge of the system model
nd parameters in (30), we compared the MH-FDIA and the eigenvalue-
ased FDIA (Liu et al., 2011) against the Luenberger observer, as well as
he moving-horizon least-square observer. Firstly, we implemented the
H-FDIA with a time horizon of 1, as shown in (29). Then the MH-FDIA
as compared with the static FDIA solved in Liu et al. (2011) against

he Luenberger observer. The comparison result is shown in Fig. 3. It is
een that both FDIAs can bypass the detection of the residual-based
DD. However, the proposed MH-FDIA induces a bigger bias in the
esulting state estimates, hence is more effective.

Next, we extended the static FDIA in Liu et al. (2011) to a moving-
orizon scheme by solving the following eigenvalue problem:

𝖺𝗑𝗂𝗆𝗂𝗓𝖾𝜆,𝐯 |𝜆|

𝖲𝗎𝖻𝗃𝖾𝖼𝗍𝗍𝗈
‖

‖𝜆𝑈11𝛴𝐯 − 𝐞𝐼−
‖

‖

2
≤ 𝜖2

(31)

‖

‖

𝐼−
‖

‖2

6

Fig. 4. A comparison of effectiveness and stealthiness of the proposed MH-FDIA and
the one in (31) against a moving-horizon least-square observer. (Red dot line is the
threshold of stealthiness, it is 0.0318𝑇 = 0.6352 for 𝑇 time window).

Fig. 5. The effectiveness and stealthiness of the proposed MH-FDIA with respect to
different maximum iteration 𝑀 in Algorithm 1. The black lines are the mean values.
The grayed areas show regions of all possible values. The red dot line is the threshold
of stealthiness, it is 0.0318𝑇 = 0.6352 for 𝑇 time window.

here 𝑈11 =
[

𝐼𝑛 0𝑛×(𝑇𝑚−𝑛)
]

𝑈⊤
𝐼− corresponds to the direction where

𝐼− takes effect on the range space of 𝐻 . Then the resulting FDIA is
iven by 𝐞𝑖𝑖 = 𝜆⋆𝑈12𝛴𝐯⋆, where 𝜆⋆, 𝐯⋆ are the solution of (31), and

𝑈12 =
[

𝐼𝑛 0𝑛×(𝑇𝑚−𝑛)
]

𝑈⊤
𝑖 corresponds to the direction where 𝐞𝑖 takes

effect on the range space of 𝐻 .
We implemented the proposed MH-FDIA with 𝜆0 = 1𝑒–4 and a

maximum number of iterations 𝑀 = 2000. The results are shown
in Fig. 4. It is seen that the proposed MH-FDIA has a much bigger
effectiveness on the system than the state-of-art counterpart. Moreover,
the proposed MH-FDIA explores the whole feasible region, while the
one in the literature is more conservative. This indicates that the
proposed MH-FDIA algorithm generates more powerful attacks.

Next, we performed additional simulations to explore the effect of
the parameters of the proposed algorithm. We ran the proposed scheme
50 times with unique values of 𝑀 ranging from 100 to 20 000. The
initial step size was set as 𝜆 = 1𝑒−4 and the convergence tolerance
is set as 1𝑒−4. 7 attack channels were chosen at random. The results
in Fig. 5 show the mean effectiveness and stealthiness, along with
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Fig. 6. The effectiveness and stealthiness of the MH-FDIA for different numbers of
attacks. The corresponding attack supports are chosen at random. The black lines are
the mean values. The grayed areas show the spread of all possible values. The red dot
line is the threshold of stealthiness, it is 0.0318𝑇 = 0.6352 for 𝑇 time window.

their corresponding spread for all 50 simulation cases. It is seen that
the mean effectiveness saturates at 𝑀 = 2131 when 𝜆 = 1𝑒−4. The
saturation happens sooner (𝑀 = 300) when we increase the step size
to 𝜆 = 1𝑒 − 3. This shows that the proposed scheme is computation-
ally efficient and one could adjust the parameters based on available
computational resources.

Second, we evaluated the performance of the proposed MH-FDIA
for different numbers of compromised measurements. 50 simulation
experiments were carried out with randomized attack support for each
different number of compromised sensors ranging from 1 to 19. We set
the initial step size is set as 𝜆 = 1𝑒−4. Fig. 6 shows that the effectiveness
increases with the number of compromised measurements. On the other
hand, all the maximum stealthiness is below the detection threshold.
Moreover, it is seen that the maximum and mean stealthiness are close
to the detection threshold, which indicates that the proposed algorithm
explores the vulnerability space of the system as much as possible.
Furthermore, it is seen that the mean stealthiness increases and then
decreases since more explorable channels open up, thus making the
attacks more stealthy without sacrificing effectiveness.

5.2. Experiment: Wheeled mobile robot

In this subsection, we implemented the proposed MH-FDIA on a
nonlinear path-following control system of a differential-driven
wheeled mobile robot (DDWMR). The attacker is assumed to only have
model knowledge of vehicle Kinematics.

The non-holonomic kinematics of DDWMR is given by:

[

�̇�
�̇�

]

=
⎡

⎢

⎢

⎣

0 1
𝑐𝑜𝑠(𝜃) −𝑑𝑠𝑖𝑛(𝜃)
𝑠𝑖𝑛(𝜃) 𝑑𝑐𝑜𝑠(𝜃)

⎤

⎥

⎥

⎦

𝐮 + 𝐰

≜ 𝑓 (𝐱,𝐮,𝐰),

(32)

where 𝐮 = [𝑣, 𝜔]⊤ ∈ R2 is the kinematic input vector composing of
the longitudinal velocity 𝑣 [𝗆∕𝗌] and the yaw rate 𝜔 [𝗋𝖺𝖽∕𝗌], 𝜃 [𝗋𝖺𝖽] is
the heading angle, 𝐳 = [𝑥, 𝑦]⊤ ∈ R2 is the location vector comprising
the 𝑥, 𝑦-coordinates location of the vehicle, 𝐱 =

[

𝜃 𝑥 𝑦
]⊤ is the

augmented state vector composing of pose state and location states
of the vehicle, 𝐰 ∼  (0, 𝑄) is the process noise, and 𝑑 = 0.0562 m
is the distance between the medium point of the axis of wheels and
7

Fig. 7. Schematic description of the simulation of MH-FDIA on the path-tracking
control system of DDWMR.

center of mass. Given the desired path 𝐳𝑑 , we use a common kinematic
controller (Xie, Wang, & Wang, 2018; Zheng & Anubi, 2020):

𝐮 =

[

𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃)
− 1

𝑑 𝑠𝑖𝑛(𝜃)
1
𝑑 𝑐𝑜𝑠(𝜃)

]

(

�̇�𝑑 +𝐾(𝐳 − 𝐳𝑑 )
)

, (33)

where the control gain 𝐾 > 0.
The vehicle is equipped with GPS, IMU, and an encoder, resulting

in the measurement model

𝐲 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑐𝑜𝑠(𝜃) 0
0 𝑠𝑖𝑛(𝜃)
1 0
0 1

1∕4𝑟 𝐿∕4𝑟
1∕4𝑟 −𝐿∕4𝑟

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⋅ 𝐳 + 𝐯 ≜ 𝑔(𝐱, 𝐯) (34)

where 𝐯 ∼  (0, 𝑅). An unscented Kalman filter (UKF) is used to
stimate the vehicle’s states 𝐱. Firstly, following standard unscented
ransformation (Julier & Uhlmann, 1997), we use 2𝑛 + 1 sigma points
o approximate the state 𝐱 with assumed mean �̄� and covariance 𝑃𝐱 as
ollows:

0 = 𝐱, 𝜒𝑖 = 𝐱 + (
√

(𝜆 + 𝑛)𝑃𝐱)𝑖, 𝑖 = 1,… , 𝑛,

𝜒𝑖+𝑛 = 𝐱 + (
√

(𝜆 + 𝑛)𝑃𝐱)𝑖−𝑛, 𝑖 = 𝑛 + 1,… , 2𝑛.

The corresponding weights for the sigma points are given as 𝑊 𝑚
0 =

∕(𝑛+𝜆), 𝑊 𝑐
0 = 𝑊 𝑚

0 + (1− 𝛼2 + 𝛽), 𝑊𝑖 = 1∕2(𝑛+𝜆), and 𝜆 = 𝛼2(𝑛+ 𝜅) − 𝑛
epresents how far the sigma points are away from the state, 𝜅 ≥ 0, 𝛼 ∈
0, 1], and 𝛽 = 2 is the optimal choice for Gaussian distribution. Assume
𝑘−1 ∼  (�̄�𝑘−1, 𝑃𝐱,𝑘−1), the prediction step is given by

𝑘 = 𝑓 (𝑘−1,𝐮𝑘,𝐰𝑘), 𝑘 = 𝑔(𝑘, 𝐯𝑘),

�̂�−𝑘 =
2𝑛
∑

𝑖=0
𝑊𝑖𝑘, �̂�−𝑘 =

2𝑛
∑

𝑖=0
𝑊𝑖𝑘,𝑖,

𝑃𝐱,𝑘 =
2𝑛
∑

𝑖=0
𝑊𝑖(𝑘 − �̂�𝑘)(𝑘 − �̂�𝑘)𝑇 + 𝑅,

Next, given the new measurement 𝐲𝑘, the correction step is as follows

̂ ̂− ̂− ̂ ̂ 𝑇 (35)
𝐱𝑘 = 𝐱𝑘 +𝐊𝑘(𝐲𝑘 − 𝐲𝑘 ), 𝑃𝐱,𝑘 = 𝑃𝐱,𝑘 −𝐊𝑘𝑃𝐲,𝑘𝐊𝑘 ,
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where the Kalman gain is 𝐊𝑘 = 𝑃𝐳𝐲𝑃−1
𝐲,𝑘 with

̂𝐲,𝑘 =
2𝑛
∑

𝑖=0
𝑊𝑖(𝑘,𝑖 − �̂�−𝑘 )(𝑘,𝑖 − �̂�−𝑘 )

𝑇 +𝑄,

𝑃𝐳𝐲 =
2𝑛
∑

𝑖=0
𝑊𝑖(𝑘,𝑖 − �̂�−𝑘 )(𝑘,𝑖 − �̂�−𝑘 )

𝑇 .

To establish an MH-FDIA generator, we linearized the models of the
DDWMR around the equilibrium points 𝐱𝑒𝑞 = [𝜃0 𝑥0 𝑦0]⊤, discretized
it using Euler’s approximation with a sampling time 𝑇𝑠 = 0.01 𝗌, and
iterated forward 𝑇𝑓 = 20 samples:

𝐲𝐼𝑇𝑓 = 𝐻𝐱𝑖−𝑇𝑓+1 + 𝐺𝐮𝐼𝑇𝑓 (36)

where

𝐻 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐶

𝐶𝐴

𝐶𝐴2

⋮

𝐶𝐴𝑇𝑓

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐺 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 ⋯ 0

𝐶𝐵 0 ⋯ 0

𝐶𝐴𝐵 𝐶𝐵 ⋯ 0

⋮ ⋮ ⋱ ⋮

𝐶𝐴𝑇𝑓−1𝐵 𝐶𝐴𝑇𝑓−2𝐵 ⋯ 𝐶𝐵

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

ith

𝐴 =
⎡

⎢

⎢

⎣

1 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

, 𝐵 =
⎡

⎢

⎢

⎣

0 1
𝑐𝑜𝑠(𝜃0) −𝑑𝑠𝑖𝑛(𝜃0)
𝑠𝑖𝑛(𝜃0) 𝑑𝑐𝑜𝑠(𝜃0)

⎤

⎥

⎥

⎦

𝑇𝑠,

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝑥0𝑠𝑖𝑛(𝜃0) 𝑐𝑜𝑠(𝜃0) 0
𝑦0𝑐𝑜𝑠(𝜃0) 0 𝑠𝑖𝑛(𝜃0)

0 1 0
0 0 1
0 1∕4𝑟 𝐿∕4𝑟
0 1∕4𝑟 −𝐿∕4𝑟

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

ince each state of the kinematic model in (33) is an equilibrium
oint with zero velocity, the attacker must construct their own UKF to
btain the current location states of the vehicle 𝐱𝑒𝑞 , as shown in Fig. 7.
hereafter, the attacker can implement Algorithm 1 with the linearized
odel in (36).

The MH-FDIA was injected through the third and fourth measure-
ent channels, 𝑖 = {3, 4}. The stealthiness threshold is set as 𝜖𝑖 = 0.05

or each time step, then 𝜖 = 𝑇𝑓 𝜖𝑖 = 1 for an observation window of
length 𝑇𝑓 . We use the distance from the nominal estimation residual
range to measure the stealthiness. The parameters of Algorithm 1 are
chosen as 𝜆0 = 1𝑒−4 and 𝑀 = 2000.

The experiment platform setup is depicted in Fig. 8. The DDMWR
s constructed using the Yujin 2-wheel Kobuki robot with onboard Ras-
erry Pi computer and odometry sensors including two-wheel encoders,
PS, and a 3-axis gyroscope. We utilized the Kobuki ROS package3

or the dynamic control of the DDWMR, sensor data collection, and
dometry. The path-tracking kinematic controller, UKF and MH-FDIA
ere all implemented in Matlab/Simulink. The wireless communication

hannels between Simulink and Rasberry Pi were established based on
OS Melodic.

Three different path-following tasks were undertaken, namely a
traight line, a circular path, and a figure-8 path. In the straight line
ase, the MH-FDIA was initiated at 6s. Prior to 6 s, the DDWMR was
ontrolled to follow the desired straight line. Following the attack
njection, the vehicle gradually deviated from the track, as shown in
ig. 9. However, the estimation residual was below the threshold 𝜖
o the attacks were not detected, as shown in Fig. 10. Similarly, in
igs. 11 and 13, it is seen that the DDWMR was controlled to follow
he desired circular path and figure-8 path but run off the track after
H-FDIA was injected. However, the MH-FDIAs were not detected in

he two experiments according to Figs. 12 and 14. It should be noted

3 https://github.com/yujinrobot/kobuki.
8

Fig. 8. Experiment platform setup (Simulink + ROS Melodic + Rasberry Pi + DDWMR
+ Odometry Sensors).

Fig. 9. The path of DDWMR with MH-FDIA in the straight line following test. (Initial
pose and location: 𝐱0 =

[

𝜋∕4 0 0
]

).

Fig. 10. The BDD residual for the straight line case (1 is the threshold, attack injection
started at 6s).

https://github.com/yujinrobot/kobuki


Y. Zheng, S.B. Mudhangulla and O.M. Anubi Control Engineering Practice 136 (2023) 105552

a

t
r
t
m
c

6

f
p

Fig. 11. The path of DDWMR with MH-FDIA in the circular path following test. (Initial
pose and location: 𝐱0 =

[

0 0 −1
]

).

Fig. 12. The BDD residual for the circle case (1 is the threshold, attack injection started
t 50s).

hat the MH-FDIA subtly misled the vehicle to a repeatable wrong path
ather than inducing large state estimation errors. This guarantees that
he MH-FDIA is still undetectable in real-world scenarios. Also, the
isled wrong path has a similar shape to the target. This is due to the

onsideration of historical influence on the current attack injection.

. Conclusion

In this paper, we demonstrated the importance of historical in-
luence on FDIA design. A systematic MH-FDIA design framework is
roposed. Based on a formal definition of successful FDIA, the MH-FDIA
9

Fig. 13. The path of DDWMR with MH-FDIA in Figure-8 path following test. (Initial
pose and location: 𝐱0 =

[

−𝜋∕2 2 0
]

).

Fig. 14. The BDD residual for Figure-8 case (1 is the threshold, attack injection started
at 50s).

design is given against 𝓁2 MHE and BDD, and shown to be (𝛼, 𝜖)-
successful. Moreover, an adaptive algorithm is proposed to search for
the most successful FDIAs while preserving recursive feasibility.

Developing a MH-FDIA generation algorithm that does not require
pre-defined attack support will make the attack generation problem
more challenging due to nonconvexity. Developing such algorithm is
still an open problem. Additionally, a rigorous quantitative analysis
of the MH-FDIA focusing on system’s stability is also an interesting
question that needs to be addressed. Furthermore, it is also valuable
to investigate the applicability of the proposed method in other control
systems, such as fuzzy systems and neural network-based systems. Last,
to relax the reliance on model knowledge, sample-based techniques
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could be utilized within the proposed moving-horizon attack generation
framework.
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