Multi-Model Resilient Observer Under False Data Injection Attacks

O. M. Anubi C. Konstantinou C. A. Wong* S. Vedula

FLORIDA STATE UNIVERSITY CENTER FOR ADVANCED POWER SYSTEMS

Motivation

- Existing resilient observers rely on model of the physical side mainly
- Cleverly crafted FDIA can bypass physics-based only detectors/monitors
- Integrating cyber-side and physical-side model for a resilient estimator is a challenging problem
- Concurrent model can improve state-of-the art resilient estimators
 - Data-Driven model for the cyber side
 - Physics-based model for physical side

Problem Statement

Setup

Overview of Resilient Estimators:

- Error correction problem
- Compressive sensing problem
- *I*₀ minimization (nonconvex) → *I*₁ minimization (convex)
- Above relaxation holds under restricted isometric property (RIP)
- A globally convex approximation to the moving horizon compressive sensing problem with
 - The RIP condition
 - Linear time-invariant (LTI) system model
 - Auxiliary data-driven model

$$\underset{\mathbf{e}}{\text{Minimize: }} \|\mathbf{e}\|_{l_0} \quad \text{Subject to: } \quad \tilde{\mathbf{y}} = F\mathbf{e}.$$

Minimize:
$$\|\mathbf{e}\|_{l_1}$$
 Subject to: $\tilde{\mathbf{y}} = F\mathbf{e}$.

Minimize:
$$\begin{aligned} \left\| \mathbf{y}_{(T)} - H_{(T)} \mathbf{u}_{(T-1)} - \Phi_{(T)} \mathbf{x} \right\|_{1} \\ \text{Subject to:} \\ \left\| \Phi_{T} \mathbf{x} + H_{T} \mathbf{u}_{(T-1)} - \boldsymbol{\mu}(\mathbf{z}_{\mathbf{k}}) \right\|_{\Sigma^{-1}(\mathbf{z}_{k})}^{2} \leq \chi_{m}^{2}(\tau), \end{aligned}$$

$$\mathbf{y}_{(T)} = \begin{bmatrix} \mathbf{y}_{k-T+1} \\ \mathbf{y}_{k-T+2} \\ \vdots \\ \mathbf{y}_{k} \end{bmatrix} \in \mathbb{R}^{mT}, \ \mathbf{u}_{(T-1)} = \begin{bmatrix} \mathbf{u}_{k-T+1} \\ \mathbf{u}_{k-T+2} \\ \vdots \\ \mathbf{u}_{k-1} \end{bmatrix} \in \mathbb{R}^{l(T-1)},$$

$$H_{(T)} = \begin{bmatrix} 0 & 0 & \dots & 0 \\ CB & 0 & \dots & 0 \\ CAB & CB & \dots & 0 \\ \vdots & \vdots & & \vdots \\ CA^{T-2}B & CA^{T-3}B & \dots & CB \end{bmatrix} \in \mathbb{R}^{mT \times l(T-1)}, \ \Phi_{(T)} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{T-1} \end{bmatrix} \in \mathbb{R}^{mT \times n}$$

Problem Statement

Optimization Problem:

- Formulation used for the numerical studies
- Returns an estimate of the state vector
- Current state estimate using physics based model and forward propagation

Equivalent Optimization Problem:

- ◆ If a receding horizon T is large enough and (A,C) is observable
- Then there exists $F_{(T)}$ such that $F_{(T)}\Phi_{(T)} = 0$
- ◆ Following is the representation for optimization problem discussed before

Minimize:
$$\|\mathbf{e}\|_1$$

Subject to:
 $\mathbf{f}_{(T)} = F_{(T)}\mathbf{e}$
 $\|\mathbf{y}_T + \mathbf{e}_T - \boldsymbol{\mu}(\mathbf{z}_k)\|_{\Sigma^{-1}(\mathbf{z}_k)}^2 \leq \chi_m^2(\tau),$

• $e_{\tau}, y_{\tau} \in \mathbb{R}^{m}$ is the vector containing the last *m* elements of the respective vectors *e*, *y* in order.

Used in the proof of the main theorem

Results

Theorem 1 Given a dataset $\mathcal{D} = \{\mathbf{Z}, \mathbf{Y}\}$ containing historical auxiliary variables $\mathbf{Z} \in \mathbb{R}^{p \times T}$ and corresponding sensor measurements $\mathbf{Y} \in \mathbb{R}^{m \times T}$. Suppose that the latent sensor measurement satisfies the data-driven GPR prior given and that there exists $\tau \in (0, 1)$ such that the true measurement \mathbf{y}_k^* satisfies $p(\mathbf{y}_k^* | \mathbf{z}_k, \mathcal{D}) \geq \tau$. Consider the convex optimization problem discussed before. Let $\hat{\mathbf{e}}$ be the solution of the equivalent form in the previous slide. If $\delta_{2s}(F_{(T)}) < \frac{1}{\sqrt{2}}$, then, for any feasible sparse vector \mathbf{e} ,

$$\|\hat{\mathbf{e}}_{T} - \mathbf{e}_{T}\|_{2} \leq K_{1} \operatorname{sat}_{1} \left(K_{2} \|\mathbf{e} - \mathbf{e}[s]\|_{2} \right),$$

where

$$K_{1} = \sqrt{2\chi_{m}^{2}(\tau)\overline{\sigma}(\mathbf{z}_{k})}$$
$$K_{2} = K_{3}\sqrt{\frac{m-s}{2\chi_{m}^{2}(\tau)\overline{\sigma}(\mathbf{z}_{k})}}$$

with

$$K_3 = \frac{2}{\sqrt{s}} \left(\frac{\delta_{2s} + \sqrt{\delta_{2s} \left(\frac{1}{\sqrt{2}} - \delta_{2s}\right)}}{\sqrt{2} \left(\frac{1}{\sqrt{2}} - \delta_{2s}\right)} + 1 \right)$$

and $\overline{\sigma}(\mathbf{z}_k)$ is the biggest singular value of $\Sigma(\mathbf{z}_k)$.

Results

Proof Sketch

- The probability of y^{*}_k given the auxiliary variable z_k and the dataset D must be greater than or equal to τ
- This implies a quadratic inequality
 - A function of composite measurements, y_T corrupted by the sparse error vector, e_T
- True measurement $y_{(T)}^*$ is a function of $\phi_{(T)}$
 - When multiplied by $F_{(T)}$ equals to zero
- Then using Theorem 1 from the paper,
 - The optimal \hat{e} satisfies the following inequality
- With both the stated and quadratic inequalities
 - \blacklozenge We can arrive at the stated conditions

$$\mathbf{y}_{(T)} = \mathbf{y}_{(T)}^* + \mathbf{e}_{(T)}$$
$$= \Phi_{(T)}\mathbf{x}_{k-T+1} + H_{(T)}\mathbf{u}_{(T-1)} + \mathbf{e}_{(T)}$$

$$\mathbf{f}_{(T)} = F_{(T)} \left(\mathbf{y}_{(T)} - H \mathbf{u}_{(T-1)} \right)$$
$$= F_{(T)} \mathbf{e}_{(T)}$$

$$\begin{aligned} \left\| \hat{\mathbf{e}}_{(T)} - \mathbf{e}_{(T)} \right\|_{2} &\leq K_{3} \left\| \mathbf{e}_{(T)} - \mathbf{e}_{(T)}[s] \right\|_{1} \\ &\leq K_{3} \sqrt{m - s} \left\| \mathbf{e}_{(T)} - \mathbf{e}_{(T)}[s] \right\|_{2} \end{aligned}$$

Numerical Simulation

System Model

- IEEE 14-bus system with 5 generators
- Linearized generator swing equations and power flow equations.
- State variables:
 - Generators rotor angles (δ)
 - Generators frequencies (ω)
 - Voltage bus angles (θ).
- Control inputs:
 - Generators mechanical input P_g with inner PI frequency regulation
 - \blacklozenge Bus active power demand P_d .

$$\begin{bmatrix} I & 0 & 0 \\ 0 & M & 0 \\ 0 & 0 & 0 \end{bmatrix} \dot{x} = -\begin{bmatrix} 0 & -I & 0 \\ L_{gg} & D_g & L_{lg} \\ L_{gl} & 0 & L_{ll} \end{bmatrix} x + \begin{bmatrix} 0 & 0 \\ I & 0 \\ 0 & I \end{bmatrix} u$$

$$\theta(t) = -L_{ll}^{-1}(L_{lg}\delta(t) - P_d).$$

$$\begin{bmatrix} \dot{\delta}(t) \\ \dot{\omega}(t) \end{bmatrix} = \begin{bmatrix} 0 & I \\ -M^{-1}(L_{gg} - L_{gl}L_{ll}^{-1}L_{lg}) & -M^{-1}D_g \end{bmatrix} \tilde{x} + \begin{bmatrix} 0 & 0 \\ M^{-1} & -M^{-1}L_{gl}L_{ll}^{-1} \end{bmatrix} u,$$
$$y(t) = \begin{bmatrix} 0 & I \\ -P_{\text{node}}L_{ll}^{-1}L_{lg} & 0 \end{bmatrix} \tilde{x} + \begin{bmatrix} 0 & 0 \\ -P_{\text{node}}L_{ll}^{-1} & 0 \end{bmatrix} u$$

Numerical Simulation

System Model

- Reduced System State Variables:
 - Generators rotor angles (δ)
 - Generators frequencies (ω)
- Measurement Channels y(t):
 - Generator frequency ω , it is also in PI feedback loop
 - The net power injected at each bus P_{net}
- Auxiliary Model:
 - Data collected from NYISO used to build GPR
 - Covariance matrix (Σ) is used to locate mean (μ) within three standard deviations from true values.
- Threat Model:
 - FDIA on at most 30% of the measurements
 - FDIA cannot be detected by BDD (5% threshold)

Results

The multi model observer is compared against:

- ◆ Luenberger Observer:
 - Unable to reconstruct actual states under FDIA
- *I*₁- Based Unconstrained Observer:
 - Most of the signals are reconstructed
 - Cascading controller might lead to instability
- The estimated generator rotor angle (δ) is used for comparison

Numerical Simulation

Results

- Outperforms both previous observers
- State Reconstruction:
 - More accurate compared to previous observers
 - Accuracy is due to constraint from auxiliary model
- Performance Analysis:
 - Root Mean Square value
 - Maximum absolute value of error

ERROR METRIC VALUES

	RMS metric			Max. Abs. metric		
	LO	L10	MMO	LO	L10	MMO
δ_1	2.8801	0.0001	0.0001	6.4274	0.0028	0.0007
δ_2	2.7967	0.0002	0.0001	6.4437	0.0022	0.0013
δ_3	3.2746	0.0018	0.0001	9.7444	0.0387	0.0013
δ_4	3.4786	0.0004	0.0004	10.7019	0.0048	0.0042
δ_5	3.329	0.0011	0.0003	9.1387	0.0121	0.0024
LO: Luenberger Observer, L1O: Unconstrained ℓ_1 -based Observer						
MMO: Proposed Multi-Model Observer						

Conclusion and Future Work

Conclusion:

- Novel data-driven constrained I_1 minimization based observer is developed.
- Figure on the left represents implemented schematic.

Future Work:

- Cascading Controller:
 - Observer as filter
 - Feedback Loop with controller
 - Figure on the right represents proposed schematic
- Constraint:
 - Used Quadratic constraint
 - Develop sophisticated constraint
- Uncertainties:
 - Study effect of FDIA under system uncertainties

THANK YOU

Olugbenga Moses Anubi – anubi@caps.fsu.edu

More information: eng.famu.fsu.edu/~anubi/