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physical side mainly

B Cleverly crafted FDIA can bypass physics-based

only detectors/monitors

B Integrating cyber-side and physical-side model for
a resilient estimator is a challenging problem

B Concurrent model can improve state-of-the art

resilient estimators
€ Data-Driven model for the cyber side
€ Physics-based model for physical side
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Problem Statement

Setup

B Overview of Resilient Estimators:
@ Error correction problem
€ Compressive sensing problem

@ |, minimization (nonconvex) = |; minimization
(convex)

€ Above relaxation holds under restricted isometric
property (RIP)

B A globally convex approximation to the moving
horizon compressive sensing problem with
€ The RIP condition
@ Linear time-invariant (LTI) system model
@ Auxiliary data-driven model
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Problem Statement

B Optimization Problem:
€ Formulation used for the numerical studies
€ Returns an estimate of the state vector
€ Current state estimate using physics based model and forward propagation

W Equivalent Optimization Problem:
@ If areceding horizon T is large enough and (A,C) is observable
® Then there exists F() such that Fy® ) = 0
@ Following is the representation for optimization problem discussed before
Minimize:  |le||;
Subject to:
fr) = Fr)e
H.YT +er — N(Zk)Hzgl(zk) < X%,L(T),
® e, y; € R™is the vector containing the last m elements of the respective vectors e, y in order.
€ Used in the proof of the main theorem
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Results

Theorem 1 Given a dataset D = {Z,Y} containing historical auziliary variables Z € RP*T and corresponding
sensor measurements Y € R™*T Suppose that the latent sensor measurement satisfies the data-driven GPR prior
given and that there exists T € (0, 1) such that the true measurement y; satisfies p(yx*|zx, D) > 7. Consider the
convex optimization problem discussed before. Let € be the solution of the equivalent form in the previous slide. If

1
das(Fiy) < E, then, for any feasible sparse vector e,

o7 — erll, < Kisat, (Ksle — els]],)

where
K1 =\/2x2,(7)5(zk
m — 8
Ky =K.
’ 3\/2X?n 7)o (zx)’
with

and 7 (zy) is the biggest singular value of ¥ (zy).
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Proof Sketch
B The probability of y; given the auxiliary variable .
7, and the dataset D must be greater than or Y(T) = Y(1) T &(T)
equalto = O Xg—1+1 + Hryur—1) + e
B This implies a quadratic inequality

€ A function of composite measurements, y; corrupted
by the sparse error vector, ey

B True measurement yE‘T) Is a function of ¢ = Fme)
€ When multiplied by F(ry equals to zero T
B Then using Theorem 1 from the paper, e(r) — e(T)H2 < KSHG(T) — €(T) [S]HI
Q_The optimal é satisfies the followinq in.equality. | < K3MHG(T) — e [S]H
® \With both the stated and quadratic inequalities 2
€ We can arrive at the stated conditions

br) = Fr) (.Y(T) - H U(T—l))
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Numerical Simulation

System Model
B |[EEE 14-bus system with 5 generators

M Linearized generator swing equations and power
flow equations.

M State variables:
€ Generators rotor angles (6 )
€ Generators frequencies (w)
@ \/oltage bus angles (6).

W Control inputs:

4 Generators mechanical input P, with inner PI
frequency regulation

@ Bus active power demand P, .
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Numerical Simulation

System Model o .
B Reduced System State Variables: é ::" g
€ Generators rotor angles (6)
@ Generators frequencies (w) Covariance
B Measurement Channels y(t): NYISO GPR &
Mean

B Generator frequency w, it is also in Pl feedback loop
B The net power injected at each bus P

W Auxiliary Model:
B Data collected from NYISO used to build GPR

B Covariance matrix (¥) is used to locate mean (w)
within three standard deviations from true values.

B Threat Model:
B FDIA on at most 30% of the measurements
B FDIA cannot be detected by BDD (5% threshold)
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Numerical Simulation

Results

B The multi model observer is
Compared agaJnSt: x 1073 Actual . Luenberger Observer Ungcenstrained | -based Observer

2/ 5
€ Luenberger Observer: <0 \/— <0 - /"‘\I\_H/_
Unable to reconstruct actual states o : . ¢ iy ) o 2 4 6 :
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B The estimated generator rotor
angle () is used for
comparison
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Numerical Simulation

Actual + 10" Multi-Model Observer

Results /\ /\/_

B Outperforms both previous observers UL L S
o o/\ o o/\

. -0.01 /— 0.01 /—

B State Reconstruction: / / ‘¢ o o

€ More accurate compared to previous < \ /— < \ an

observers L I

@ Accuracy is due to constraint from auxiliary e_g;gg/ \ /— ue*_fjjsrj/ \ L

model _:z:o -: :;0 2 4 6 8
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B Performance Analysis: T e 6 e % 2 4 6 s

TABLE 1

€ Root Mean Square value
€ Maximum absolute value of error

ErrOR METRIC VALUES

RMS metric Max. Abs. metric

L0 L10 MMO L0y L10) MMO
i1 2.8801 (0.0001 0.0001 6.4274 0.0028 00007
fie 27967 | 0.0002 | 0.0001 6.4437 0.0022 00013
fiy 32746 | 0.0018 | 0.0001 9.7444 0.0387 00013
f4 34786 | 0.0004 | 0.0004 10,7019 | 0.0048 0.0042
fs 3.329 0.0011 0.0003 9.1387 0.0121 0.0024
LO: Luenberger Observer, L10): Unconstrained #;-based Observer
MMO: Proposed Multi-Model Observer
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Conclusion and Future Work

B Conclusion:

€ Novel data-driven constrained |I; minimization
based observer is developed. P Wy p W,
® Figure on the left represents implemented g W, 8 W
schematic. ] e ' ‘ >
/\}' _ Flectrical Grid . /J J Electrical Grid
W Future Work: Mp, P "‘P Cl :
. . ne
@ Cascading Controller: - d| = u
Observer as filter L I d l I
Feedback Loop with controller 'EI |  BadData , -
Figure on the right represents proposed schematic _ Detection s — |
: P Q Multi-Model
€ Constraint: net A ¢ ob
i i Unconstrained X J_Z Server
Used Quadratic constraint N —_— Ay
Develop sophisticated constraint Observer X
€ Uncertainties: R f
Stud . '0 Multi-Model X UC I
y effect of FDIA under system uncertainties g‘, Z o — — Controller j—
——p server
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THANK YOU

Olugbenga Moses Anubi  — anubi@caps.fsu.edu

More information:
eng.famu.fsu.edu/~anubi/
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