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The natural frequency of a rubber-damped torsional vibration absorber (TVA) depends
on the excitation amplitudes and frequencies in a highly nonlinear manner. This is due to
nonlinear shear properties of the rubber ring. In this study, the nonlinear static and
dynamic shear characteristics of a rubber ring, and the natural frequency of a nonlinear
TVA are experimentally characterized firstly. Since a rubber ring employed in a rubber-
damped TVA is usually in the compression state, its static and dynamic shear properties
depend upon the compression ratio and dimensions apart from the chemical ingredients
in a highly complex manner. The prediction of the natural frequency of a rubber-ring
TVA thus poses considerable complexities. In this study, a special fixture is designed and
fabricated for characterizing shear properties of a rubber ring subject to different com-
pression ratios. The shear properties are subsequently characterized using different con-
stitutive models, and a methodology for identifying the model parameters is presented
considering the measured properties. Second, a methodology for estimating the natural
frequency of the TVA is proposed, and the effectiveness of the proposed method is demon-
strated through comparisons of the estimated natural frequency with the measured val-
ues. The results of the study suggest that the model using fractional derivatives to
characterize nonlinear shear properties of a rubber ring can be effectively used to obtain
accurate estimation of natural frequency of a nonlinear TVA over a wide range of excita-
tions. The natural frequency of a TVA can thus be accurately estimated before prototyp-
ing using the experimental and modeling methods developed in this paper.
[DOI: 10.1115/1.4033579]

Keywords: torsional vibration absorbers, rubber damped, characterization of nonlinear
natural frequency, modeling of rubbers properties, constitutive models

1 Introduction

Rotating machines such as compressors, turbines, and crank-
shaft in an internal combustion engines, invariably, exhibit tor-
sional vibrations [1]. Various design constraints often cause the
rotating shafts to undergo resonant oscillations at several critical
speeds within the working speed range. The high magnitudes of
torsional vibration corresponding to these critical speeds may lead
to shaft failures, if not controlled. TVA such as centrifugal pendu-
lum absorber, Houdaille damper, dry-friction damper, Frahm’s
absorber, and rubber dampers [2,3] are commonly used to dampen
torsional vibration in the rotating machines. Among these, the rub-
ber material damper is most widely used due to its relatively low
cost, simple construction, and greater reliability [1,4]. This, in
part, is due to developments for processing of rubber materials,
which could be easily moulded to the desired shape and design
specifications [5].

The developments in passive TVA and their applications have
been widely reported during the past many decades. These may be
grouped in four categories on the basis of the major focus or
objectives: (i) studies reporting methods for realizing target natu-
ral frequency, damping, and moment of inertia (MOI) of a TVA
to achieve optimal control of vibration of the primary system
[1–4]; (ii) studies exploring applications of smart materials such

as electrorheological or magnetorheological fluids in controllable
TVAs [6,7]; (iii) studies investigating nonlinear transient dynamic
responses of TVAs such as pendulum TVA [8,9]; and (iv) those
exploring alternate concepts and TVA structures, such as pendu-
lum or roller type absorbers [10].

The natural frequency of a rubber material damper is an impor-
tant design parameter and its determination continues to be chal-
lenging due to nonlinear shear properties of the rubber rings. The
dynamic properties of rubber materials used in TVAs have been
described using widely different linear and nonlinear visco-elastic
models. The models such as Kelvin–Voigt, Maxwell, and frac-
tional derivate models have been commonly used for characteriza-
tion of visco-elastic properties of rubber materials [11–15]. The
excitation amplitude dependence of stiffness and damping proper-
ties of the rubber have been realized by introducing a friction ele-
ment in the Maxwell and fractional derivate models, which have
been widely used for characterization of nonlinear behaviors of
rubber isolators of compression type (e.g., [16–20]). Berg [16]
proposed a five-parameter model for characterizing mechanical
behavior of a rubber spring in railway suspensions considering
superposition of elastic, fractional, and viscous forces. Sjoberg
and Kari [17,18] presented a nonlinear dynamic model integrating
the shape factor-based stiffness, a fractional derivative, and a gener-
alized friction model for describing properties of a cylindrical
carbon-filled rubber isolator. An extension of the above-stated five-
parameter fractional derivative model was further proposed for char-
acterizing dynamic properties of a hydraulic engine mount [19,20].

A rubber-damped TVA generally consists of an inertia ring that
absorbs the vibration energy, a rubber ring that provides essential
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stiffness and damping properties, and a hub that couples the TVA
to the rotating shaft [1,4,21]. During assembly, the rubber ring is
usually forced into the gap between the inertia ring and the hub in
an interference fit manner. The rubber ring pressed into the gap
between the inertia ring and the hub of the TVA serves two func-
tions: (i) provide torsional stiffness and damping and (ii) withstand
torque applied to TVA when TVA is required to transmit power as
in the case of torsional vibration damper used in the engine crank-
shaft. The rubber ring within the TVA thus remains in a compres-
sion state, whose properties cannot be accurately described by
majority of the models described in the aforementioned studies.
Since the shear properties of the rubber ring in a TVA are dependent
upon its compression ratio and dimensions in a highly nonlinear
manner, apart from the chemical properties [22], the prediction of
natural frequency of a rubber TVA is quite complex. The reported
analytical and numerical models of the rubber TVA generally con-
sider dynamic shear modulus ranging from 1.5 to 3 MPa and Pois-
son’s ratio near 0.49 [1], while the contributions due to variations in
compression ratio (interference fit value), the chemical ingredients,
and sizes of the rubber ring are mostly ignored.

The estimation of the natural frequency of a rubber-damped
TVA involves experimental characterizations of highly nonlinear
static and dynamic shear properties of rubber ring under wide
ranges of compression and excitations. While the shear
stress–strain properties of rubbers have been reported in a number
of studies under different experimental conditions [23,24], to the
best of our knowledge, the characterizations of static and dynamic
properties of rubber rings under ranges of compression ratio have
not been reported. A reliable method for predicting the natural fre-
quency of a nonlinear rubber-damped TVA prior to prototyping
thus does not yet exist. In the industry, the natural frequencies of
the rubber TVAs are generally determined via repeated fabrica-
tions and measurements using different compression ratios, sizes,
and shapes of the rubber ring. It has been shown that the natural
frequency of a rubber-damped TVA is determined largely by the
properties of the rubber ring and the external excitations. Devel-
opments of an experimental method for characterizing nonlinear
shear properties and development of a systematic methodology
for estimating natural frequency of a TVA over desired ranges of
loading and excitation conditions are thus significant for realizing
the designs of rubber-damped TVAs in an efficient manner.

This study presents experimental and modeling methods for
characterizing nonlinear static and dynamic shear properties of a
rubber ring subject to different compression ratios. The design of
a test rig is presented for experimental characterizations of shear
properties under different compression ratio and excitation condi-
tions. The natural frequency of the nonlinear TVA under different
excitations is also measured using the test system developed by

Saginomiya Inc., Yokohama, Japan. A systematic methodology is
further presented for estimating natural frequency of a nonlinear
TVA over a range of loading and excitation conditions using
laboratory-measured shear characteristics together with known
visco-elastic models. The relative effectiveness of the models in
estimating the natural frequency over a wide range of excitation
amplitudes is demonstrated through comparisons of the estimated
and measured natural frequencies. The relations between the natu-
ral frequency of the TVA and characteristics of rubber ring are
illustrated. It is shown that the natural frequency can be accurately
estimated using the proposed method prior to the prototype
design, which can help engineer to choose sizes of rubber ring,
compression ratio, and chemical compounds for mixing rubbers.

2 Characterization of Shear Properties of Rubber

Specimens

Figure 1(a) illustrates a rubber-damped TVA employed for con-
trol of torsional vibration of engine crankshafts. The TVA com-
prises a hub, a rubber ring, and an inertia ring. The natural
frequency of the TVA is determined from MOI of the inertia ring,
and stiffness and damping properties of the rubber ring. The stiff-
ness and damping of the rubber ring, however, are very difficult to
obtain due to their nonlinear dependence on dimensions of the
rubber ring, rubber compound, and compression ratio [25,26].
Experimental characterizations of shear properties of the rubber
ring under a given compression ratio thus need to be characterized
first for estimating natural frequency of the TVA.

2.1 Measurement of Shear Properties of Rubber Specimens.
A test fixture is designed for experimental characterization of
static and dynamic shear characteristics of rubber specimens as
shown in Fig. 1(b). The fixture includes a movable block (1), two
clamping plates (2,10), two locking blocks (4,7), an intermediate
block (5), two rubber specimens (8), a gaskets (9), and two sets of
fastening bolts (3,6). The movable block (1) and the intermediate (5)
and locking blocks (4,7) are connected to the moving and fixed ends
of an elastomer test equipment (MTS 831), respectively. Two rubber
specimens (8) are placed symmetrically between the two locking
blocks (4,7) and the movable block (1), while the two locking blocks
can be compressed by the two clamping plates (2,10). The compres-
sion ratio of the rubber specimens, defined as ratio of the compressed
thickness to undeformed thickness, could be varied by using different
thickness of the gaskets between the two clamping plates. Table 1
summarizes the undeformed specimen dimensions in terms of thick-
ness d0 and area A0, together with the shore hardness.

An experiment was designed to characterize static and dynamic
shear properties of the rubber specimen in terms of reaction

Fig. 1 (a) Rubber-damped TVA for an engine crankshaft and (b) fixture for measuring
shear properties of a rubber specimen (1-moveable block; 2,10-clamping plates; 2,6-fasten-
ing bolts; 4,7-locking blocks; 5-intermediate block; 8-rubber specimens; 9-gaskets)
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force–displacement relationships during loading and unloading
under different compression ratios. For this purpose, a harmonic
displacement is applied to the movable block, while the resulting
reaction force is measured at the fixed end. In the static experi-
ment, a 5-mm amplitude excitation is applied at a low frequency
of 0.2 Hz so as to minimize the viscous force contributions. The
dynamic properties of the rubber specimen are obtained under a
low amplitude (0.1 mm) excitation with frequency swept from 5
to 500 Hz. The low amplitude excitation is chosen so as to mini-
mize the hysteresis effect attributed to friction between the mole-
cules in the rubber specimen. The measured data are used to
determine dynamic stiffness and loss angle of the rubber speci-
men. The experimental and the data analysis methods for obtain-
ing dynamic stiffness are presented in detail in Ref. [22].

Both the static and dynamic experiments were conducted for
different compression ratios ranging from 20% to 50%, which cor-
respond to the variations encountered for rubber rings in TVAs
[1]. Figure 2(a) illustrates the static force–displacement character-
istics of the rubber specimen under different compression ratios,
while the dynamic stiffness characteristics of the specimen
obtained for different compression ratios in the 5–500 Hz fre-
quency range are presented in Fig. 2(b).

2.2 Models and Characterization of Rubber Specimens.
The measured data reveal three distinct features of the rubber
specimen, namely, the elastic, visco-elastic, and hysteresis effects,
as expected. A number of models have been reported to describe
these features [13–16]. In this study, three different models,
namely, the Kelvin–Voigt, the Maxwell, and the fractional deriva-
tive models (Fig. 3) are considered and discussed in view of their
ability to describe both the static and dynamic properties of
rubber.

In the Kelvin–Voigt model, shown in Fig. 3(a), the dynamic
stiffness k* of the rubber specimen can be derived and is given by

jk�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

KV þ ðxCKVÞ2
q

(1)

where KKV and CKV are the stiffness and shear damping constants,
respectively, and x is the excitation frequency. The above model
is considered valid when the contributions due to hysteresis or
friction element can be ignored.

Similarly, assuming negligible contributions due to friction ele-
ment, the dynamic stiffness of the Maxwell model, shown in
Fig. 3(b), can be given by

jk�j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2C2

MvKMv

K2
Mv þ x2C2

Mv

þ Ke

 !2

þ xCMvK2
Mv

K2
Mv þ x2C2

Mv

 !2
vuut (2)

where KMv and CMv are shear stiffness and shear damping coeffi-
cients, respectively, and Ke is the elastic stiffness.

Table 1 Rubber specimen material property and dimensions

Material Shore hardness/HA Thickness d0 (mm) Area A0 (mm2)

EPDM 70 8 40� 20

Fig. 2 Measured characteristics of the rubber specimen under different compression ratios:
(a) force–displacement (excitation amplitude: 5 mm; frequency: 0.2 Hz) and (b) dynamic stiff-
ness (excitation amplitude: 0.1 mm)

Fig. 3 Models for the rubber specimen (a) Kelvin–Voigt model, (b) Maxwell model, and (c)
fractional derivative model
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The fractional derivative model, shown in Fig 3(c), yields
dynamic stiffness of the form [11]

jk�j ¼ jKe þ bðixÞaj (3)

where constant b and exponent a are the model parameters. The
parameters of the models in Eqs. (1)–(3) are identified from the
measured dynamic stiffness of the rubber specimen through mini-
mization of error between the model and measured dynamic
stiffness.

Under large magnitude deformations applied at a very low
speed (in the order of 20 mm per minute), the force–displacement
curves obtained during loading and unloading are not coincident
for rubber materials, which is evident from the measured static
properties of the specimen presented in Fig. 2(a). The typical
force–displacement properties, shown in Fig. 4, invariably exhibit
hysteresis effect. The force versus displacement relations for the
rubber specimens are thus described by the friction element, Tf , in
the Maxwell and fractional derivate models [16].

Referring to Fig. 4, the force developed during loading Ff can
be expressed as [16]

Ff ¼ Ffs þ
S� Ss

S1=2 1� lð Þ þ S� Ssð Þ Ff max � Ffsð Þ (4)

where Ff max is the maximum friction force, Ffs and Ss are
unknown force and displacement, respectively, of the rubber spec-
imen and l is an intermediate parameter. S1=2 is the displacement
when force equals half of the maximum friction force, and is
given by

S1=2 þ
Ff max

Kmax � Ke
; l ¼ Ffs=Ff max (5)

Similarly, the force developed during unloading is expressed as
[16]

Ff ¼ Ffs þ
S� Ss

S1=2 1þ lð Þ � S� Ssð Þ Ff max þ Ffsð Þ (6)

2.3 Constitutive Models and Parameters Identification.
The stiffness and damping properties of a rubber ring are known
to depend on its dimensions and compression ratio apart from the
rubber compound. In order to account for the dimension depend-
ence of the parameters for modeling shear dynamic properties of
rubbers, three constitutive models based on the above-mentioned
Kelvin–Voigt, Maxwell, and friction derivative models are formu-
lated as shown in Fig. 5. The relation between the shear stress (s)
and shear strain (c) in the constitutive models is governed by the
constitutive constants. In the Kelvin–Voigt model, the constitutive
constants GKV and gKV represent the elastic and viscous damping
of the rubber material, respectively. The constitutive constants in
the Maxwell model are Ge, GMV, gMV, sf max, and c1=2. The Ge rep-
resents the elastic modulus corresponding to stiffness Ke in Fig.
3(b); the GMV and gMV represent the elastics and viscous damping
moduli and corresponding to the visco-elastic element in Fig. 3(b)
characterized by KMv and CMv, respectively, and sf max and c1=2

represent maximum friction stress and shear strain corresponding
to half the maximum friction stress and corresponding to by Tf in
Fig. 3(c), respectively.

The elastic shear modulus of a rubber specimen subject to shear
deformation, shown in Fig. 6, is related to its stiffness and the
dimensions such that

G ¼ s
c
¼ F=2A

x=d
¼ Fd

2Ax
¼ Kd

2A
(7)

where F is the applied shear force, A is contact area of the com-
pressed rubber specimen with the fixture, x is shear displacement,

Fig. 4 Typical force–displacement characteristics of a rubber
subject to large magnitude deformation at a slow rate

Fig. 5 Constitutive models for describing shear dynamic properties of rubbers based on: (a)
Kelvin–Voigt model, (b) Maxwell model, and (c) Fractional derivative model

Fig. 6 Deformation of the rubber specimen under a shear load
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and d is thickness of the compressed rubber specimen. s and c are
elastic shear stress and shear strain of the rubber specimen,
respectively, and K is its stiffness. In the above equation, the shear
stress is obtained from F/2A, since two rubber specimens were
subject to shear simultaneously in the experiments.

The compression ratio of the rubber specimen n is defined as

n ¼ d0 � d

d0

(8)

Considering the rubber specimen to be incompressible yields

A0d0 ¼ Ad (9)

where A0 is the contact area between the fixture and rubber speci-
men prior to the specimens deformation.

Upon substituting for A and d from Eqs. (8) and (9) into Eq.
(7), the elastic shear modulus can be expressed in terms of the
compression ratio

G ¼ Kd0 1� nð Þ2

2A0

(10)

In a similar manner, the constitutive constant g related to the
viscous effect can also be related to the compression ratio as

g ¼ Cd0 1� nð Þ2

2A0

(11)

where C is the damping coefficient of the rubber specimen.
The maximum shear stress sf max and shear strain c1=2 corre-

sponding to half of the maximum shear stress in the constitutive
models are obtained in terms of the compression ratio from

sf max ¼
Ff max

A
¼ Ff max 1� nð Þ

A0

(12)

c1=2 ¼
x1=2

d
¼

x1=2

d0 1� nð Þ (13)

In the above relations, x1/2 represents the shear deformation cor-
responding to half of the maximum force Ff max [16].

The fractional derivative constitutive model for the rubber spec-
imen subject to shear deformation, shown in Fig. 6, yields follow-
ing relations for the visco-elastic shear force Fv and shear stress sv

Fv ¼ bDax; sv ¼ mDac (14)

where D is fractional derivative, b is termed as visco-elastic coef-
ficient, and m is the fractional derivative constitutive model
parameter. Considering that sv ¼ Fv=2A and c ¼ x=d, the parame-
ter m is obtained in terms of the compression ratio and specimen
dimensions as

m ¼ bd0 1� nð Þ2

2A0

(15)

It should be noted that the parameters G and g in Eqs. (10) and
(11) represent the constitutive constants GKV and gKV in the
Kelvin–Voigt constitutive model when K¼ KKV and C¼ CKV in
Fig 3(a). Similarly, in the case of the Maxwell constitutive model,
the constitutive constant parameters GMv and gMv can be
described by G and g, respectively, for K¼ KMv and C¼ CMv in
Fig. 3(b). The parameter G in Eq. (10) also describes the elastic
constitutive constant Ge in the Maxwell and fractional derivative
constitutive models, shown in Figs. 5(b) and 5(c), when K¼Ke in
the Maxwell and fractional derivative models shown in Figs. 3(b)
and 3(c). The maximum shear stress sf max and shear strain c1=2 in

Eqs. (12) and (13) are parameters in the Maxwell and fractional
derivative constitutive models, shown in Figs. 5(b) and 5(c).

The parameters of the constitutive models are identified using
the measured dynamic shear stiffness of the rubber specimen, pre-
sented in Sec. 2.1. These include the elastic shear modulus (GKV)
and viscous damping coefficient (gKV) in the Kelvin–Voigt consti-
tutive model, the shear modulus (GMv) and damping coefficient
(gMv) in the viscos-elastic element of Maxwell constitutive model,
and the damping coefficient (m) and the exponent (a) in the frac-
tional derivative constitutive model. Elastic shear modulus (Ge),
maximum friction stress (sf max), and the shear strain (c1=2) in the
Maxwell and fractional derivative constitutive models are identi-
fied from the measured force–displacement characteristics of the
rubber specimen in the quasistatic state considering different com-
pression ratios.

2.3.1 Parameters for Kelvin–Voigt Constitutive Model. The
stiffness KKV and damping CKV constants used to define the
dynamic stiffness k* of the Kelvin–Voigt model in Eq. (1) are
identified from the measured dynamic stiffness over the 5–500 Hz
frequency range for different compression ratios. The method of
least squared error minimization is used so as to minimize the
error between the computed and measured dynamic stiffness in
the above-stated frequency range for the given compression ratio.
As an example, Fig. 7 illustrates comparisons of the measured and
computed dynamic stiffness considering compression ratio of
50% and 0.1 mm excitation amplitude. The comparison suggests
good agreement between the dynamic stiffness obtained from the
identified model and the measured data in the chosen frequency
range, with the exception of notable deviation at frequencies
below 50 Hz. The correlation coefficient (r2) of the fitted dynamic
stiffness model is nearly 0.88, and the estimated KKV and CKV

equal to 2601 N/mm and 1.011 Ns/mm, respectively. The results
obtained for different compression ratios, however, revealed
decreasing stiffness and damping constants with decreasing com-
pression ratio, as seen in Table 2.

The identified model constants can be applied to determine the
dynamic stiffness of the specimen for the given compression ratio
using Eq. (1). The parameters of the Kelvin–Voigt constitutive
model, GKV and gKV, for the given compression ratio can be sub-
sequently obtained from Eqs. (10) and (11) by letting K¼ KKV

and C¼ CKV. Table 2 presents variations in the constitutive
model parameters, GKV and gKV, with compression ratio. The
results suggest that GKV varies nearly linearly with the compres-
sion ratio (r2¼ 0.973), while the variations in gKV can be
described by a polynomial function in n (r2¼ 0.98) such that

Fig. 7 Comparison of dynamic shear stiffness obtained from
the identified Kelvin–Voigt model with the measured data of the
rubber specimen (compression ratio: 50%; Excitation ampli-
tude: 0.1 mm)
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GKV ¼ �3:286nþ 4:804 (16)

gKV ¼ 9 � 10�9n4 þ 1 � 10�6n3 � 7 � 10�5n2 þ 0:0017n� 0:0132

(17)

2.3.2 Parameters for Elastic and Fractional Elements of the
Maxwell and Fractional Derivative Constitutive Models. As seen
in Figs. 5(b) and 5(c), both the Maxwell and fractional derivative
constitutive models include the elastic and friction elements. The
elastic modulus and friction parameters for each of the model cor-
responding to a given compression ratio could be identified
directly from the measured static force–displacement characteris-
tics during loading as well as unloading. As an example, Fig. 8
illustrates the measured force–displacement property of rubber

specimen under compression ratio of 20%. The maximum friction
force Ff max is identified as the force corresponding to zero displace-
ment, while the elastic stiffness ke and the maximum stiffness kmax

are obtained from slopes of lines 1 and 2, respectively. The dis-
placement x1/2 corresponding to half of Ff max is obtained from

x1=2 ¼
Ff max

kmax � ke
(18)

The elastic and friction element parameters identified for 20%
compression ratio are also illustrated in Fig. 8. The elastic modu-
lus Ge, the maximum friction stress sf max, and the shear strain c1=2

corresponding to half of maximum friction stress are subsequently
obtained from Eqs. (10), (12), and (13), respectively. Table 3 sum-
marizes these computed parameters of the Maxwell and fractional
derivative constitutive models together with the elastic and fric-
tion element parameters for different compression ratios. The
results clearly show strong dependence of the constitutive model
parameters on the compression ratio. It is further seen that the
elastic shear modulus Ge and maximum friction stress sf max

decrease and increase, respectively, with increasing compression
ratio in a nearly linearly manner. The least square error minimiza-
tion method is used to obtain following relations for Ge, sf max, and
c1=2 with the compression ratio:

Ge ¼ �1:008nþ 0:776; r2 ¼ 0:9759 (19)

sf max ¼ 0:173nþ 0:0868; r2 ¼ 0:9534 (20)

c1=2 ¼
0:0759

1� n
; r2 ¼ 0:8859 (21)

2.3.3 Parameters for Visco-Elastic Element of the Maxwell
Constitutive Model. In the Maxwell model, the dynamic stiffness
of the rubber specimen is related to the shear stiffness and damp-
ing coefficients, KMV and CMV, as seen in Eq. (2). Measured

Table 2 Identified parameters of the Kelvin–Voigt and Kelvin–Voigt constitutive models of the rubber specimen corre-
sponding to different compression ratios

Compression
ratio n (%)

Shear stiffness
KKV (N/mm)

Shear damping
CKV (Ns/mm)

Elastic shear modulus
GKV (MPa)

Viscous damping
coefficient gKV (MPa � s)

20 1303 0.3811 4.1696 0.001220
25 1406 0.5275 3.9544 0.001484
30 1581 0.6053 3.8734 0.001483
35 1722 0.6366 3.6377 0.001345
40 1912 0.7422 3.4416 0.001336
45 2147 0.8949 3.2473 0.001354
50 2601 1.0110 3.2513 0.001264

Fig. 8 Identifications of elastic stiffness ke, maximum friction
force Ffmax, and displacement 3 1/2 corresponding to half the
maximum friction force from the measured force–displacement
characteristics of the rubber specimen under 20% compression
ratio

Table 3 Identified elastic and friction elements parameters of the Maxwell and fractional derivative constitutive models of the rub-
ber specimen corresponding to different compression ratios

Maxwell model Maxwell constitutive model

Compression
ratio n (%)

Elastic stiffness
ke (N/mm)

Maximum friction
Ffmax (N)

Displacement at half of
Ffmax x1=2 (mm)

Elastic shear modulus
Ge (MPa)

Maximum friction
stress sf max (MPa)

Strain at the
half of sf max; c1=2

20 182.8 243 0.6685 0.5850 0.1215 0.104453
25 186.6 279 0.5915 0.5248 0.1308 0.098583
30 193.5 321 0.5608 0.4741 0.1404 0.100143
35 195.0 365 0.5576 0.4119 0.1483 0.107231
40 206.0 402 0.6045 0.3708 0.1508 0.125938
45 196.1 463 0.6010 0.2966 0.1592 0.136591
50 241.0 575 0.6686 0.3013 0.1797 0.16715
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dynamic stiffness data of the specimen in the 5–500 Hz frequency
range are used to determine these parameters using the least
squares method corresponding to each compression ratio of the
specimen. The two constitute model parameters, GMv and gMv, are
subsequently obtained from Eqs. (10) and (11), respectively.
Table 4 summarizes the identified parameters and the computed
constitutive model parameters corresponding to different compres-
sion ratios. It is evident that the visco-elastic element model parame-
ters are strongly dependent on the compression ratio. Least squares
error minimization method is further used to identify following rela-
tions for the visco-elastic shear modulus (GMv) and visco-elastic
damping coefficient (gMv) with the compression ratio (n) as

GMv ¼ 127:6n3 � 140:7n2 þ 47:8n� 0:648; r2 ¼ 0:92 (22)

gMv ¼ 0:468n3 � 0:522n2 þ 0:168nþ 0:0023; r2 ¼ 0:89 (23)

The identified stiffness and damping coefficients of the Max-
well model are used to estimate dynamic stiffness of the specimen
in the entire frequency range. As an example, Fig. 9(a) presents
comparison of the estimated dynamic stiffness with the measured
data corresponding to 50% compression ratio and 0.1 mm excita-
tion. The results show poor agreement between the estimated and
measured dynamic stiffness in the entire frequency range
(r2¼ 0.544). The dynamic stiffness of the Maxwell model tends to
saturate at higher frequencies, as it is evident from Eq. (2), while
the measured stiffness suggests nearly linear increase with fre-
quency at frequencies above 200 Hz.

2.3.4 Parameters for Visco-Elastic Element of the Fractional
Derivative Constitutive Model. In the fractional derivative model,
the dynamic stiffness of the rubber specimen is related to model
constants, b and a, as seen in Eq. (3). Measured dynamic stiffness
data of the specimen in the 5–500 Hz frequency range are used
to determine these model constants corresponding to each

compression ratio. The constitutive model parameters, m, is subse-
quently obtained from Eq. (13) for each compression ratio. Table 5
summarizes the identified parameters of the fractional derivative
model (b, a) and the computed constitutive model parameter (m)
corresponding to different compression ratios. The results suggest
that the exponent a of the fractional derivative model remains
nearly constant in the range of compression ratios considered
(mean¼ 0.545; standard deviation¼ 0.013), while the coefficients
b and m generally increase in quadratic and linear manners,
respectively, with compression ratio. The least squares error mini-
mization method is used to identify following relations between
the parameters b and m and the compression ratio (n):

b ¼ 0:0223n2 � 0:6523nþ 17:824; r2 ¼ 0:998 (24)

m ¼ 0:0294nþ 0:0369; r2 ¼ 0:862 (25)

As an example, Fig. 9(b) presents comparison of the dynamic
stiffness estimated from the identified model with the measured
data in the 5–500 Hz frequency range considering 50% compres-
sion ratio and 0.1 mm excitation amplitude. The comparison sug-
gests very good agreement between the estimated and measured
dynamic stiffness in the entire frequency range (r2¼ 0.996). Simi-
lar degree of agreement was also observed for different compres-
sion ratios. From the results presented in Figs. 7 and 9, it is
deduced that the fractional derivative model can accurately
describe the variations in dynamic stiffness of the rubber speci-
mens in the range of compression ratios considered in the study.

3 Measurements and Estimations of the Natural

Frequency of a Rubber-Damped TVA

3.1 Measurements of Natural Frequency. An experimental
setup is designed and developed for measuring natural frequency

Table 4 Identified visco-elastic element parameters of the Maxwell and Maxwell constitutive models

Maxwell model Maxwell constitutive model

Compression
ratio n (%)

Visco-elastic stiffness
KMv (N/mm)

Shear damping
CMv (Ns/mm)

Visco-elastic shear
modulus GMv (MPa)

Visco-elastic damping
Coefficient gMv (MPa � s)

20 1340 5.950 4.2880 0.019040
25 1608 6.707 4.5225 0.018863
30 1852 7.293 4.5374 0.017868
35 1991 8.736 4.2060 0.018455
40 2297 9.051 4.1346 0.016292
45 2684 9.432 4.0596 0.014266
50 3197 11.98 3.9963 0.014975

Fig. 9 Comparisons of estimated dynamic shear stiffness of the rubber specimen with the
measured data: (a) Maxwell constitutive model and (b) fractional derivative constitute model
(compression ratio: 50%, excitation amplitude: 0.1 mm)
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of the rubber-damped TVA over a range of excitation magnitudes.
A pictorial view of the experimental setup is illustrated in Fig. 10,
where the hub of the TVA is connected to an excitation shaft,
while the inertia ring is in a free state. The shaft can generate dif-
ferent magnitudes of oscillatory angular motions over a wide fre-
quency range. The experiment was designed to measure FRF of
the TVA under different excitation magnitudes in the 100–400 Hz
frequency range, while the compression ratio of the inner ring was
limited to 40%. For this purpose, two accelerometers were in-
stalled to measure accelerations due to excitation of the shaft and

that due to motion transmitted to the inertia ring, as shown in Fig.
10. The FRF of the TVA under different excitations were subse-
quently obtained from the ratio of Fourier transform of accelera-
tion at the inertia ring to that of the hub and expressed in terms of
both the magnitude ratio and the phase. The frequency corre-
sponding to the peak magnitude ratio is considered as the natural
frequency of the TVA for the given oscillatory excitation
amplitude.

As an example, Fig. 11(a) illustrates the measured magnitude ra-
tio and phase response of the TVA under 0.01 deg oscillation ampli-
tude and rubber ring compression ratio of 40%. The magnitude ratio
approaches the peak value near 360 Hz. The phase angle near this
frequency is close to �90 deg. This frequency can thus be consid-
ered as the natural frequency of the rubber-damped TVA. However,
the FRF of the TVA and thus the natural frequency is strongly influ-
enced by the oscillations amplitude, due to strong and nonlinear de-
pendence of the dynamic stiffness and damping of the rubber ring
on the excitation magnitude [25,26]. The measurements were thus
repeated under different amplitudes of oscillations, ranging from
0.01 deg to 0.07 deg, and the magnitude ratio responses of the TVA
are presented in Fig. 11(b). The results clearly show that the fre-
quency corresponding to peak magnitude ratio decreases as the os-
cillation angle amplitude is increased. This is attributed to special
character of the elastomers, namely, the reductions in effective
dynamic stiffness with increasing deformation [26]. Considering the
observed variations in frequency corresponding to peak magnitude
ratio, it is considered more appropriate to refer to this frequency as
the nonlinear natural frequency of the rubber-damped TVA.

3.2 Modeling a Rubber-Damped TVA. The natural fre-
quency of the TVA may be estimated from the stiffness of the rub-
ber ring and the MOI of the inertia ring. Owing to strong

Fig. 10 Experimental setup for measurements of frequency
response function (FRF) of the rubber-damped TVA (1-excitation
shaft; 2-hub; 3-inertia ring; 4,5-accelerometers)

Table 5 Identified visco-elastic element parameters of the fractional derivative models

Fractional derivative model Fractional derivative constitutive model

Compression ratio n /% b/(Nsa/mm) a m /(Nsa/mm3)

20 13.821 0.5450 0.04423
25 14.816 0.5489 0.04167
30 19.012 0.5525 0.04658
35 22.347 0.5469 0.04721
40 27.116 0.5524 0.04881
45 33.342 0.5529 0.05043
50 41.088 0.5172 0.05136

Fig. 11 Measured frequency response characteristics of the TVA: (a) magnitude ratio and phase responses under 0.01 deg
oscillation angle amplitude and (b) magnitude ratio under different oscillation angle amplitudes
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dependency of the dynamic stiffness and damping property of the
rubber on the excitation amplitude, the characterization of rubber
ring stiffness poses considerable complexity. In this study, the
stiffness of the rubber ring is obtained from the properties of the
rubber specimen measured and modeled in Sec. 2 considering dif-
ferent models. For this purpose, the models of rubber-damped
TVAs are first developed using the Kelvin–Voigt, Maxwell, and
fractional derivative models of the rubber specimen, as shown in
Fig. 12. In the models, Jh and Ji represent the mass MOI due to
hub and the inertia ring, respectively, hh is the oscillation angle
excitation applied to the hub, and hi is the response of the inertia
ring. The dynamic characteristics of the rubber ring in the TVA
model are described using the rubber specimen models presented
in Fig. 3, which are further explained below.

In the Kelvin–Voigt model, shown in Fig. 12(a), the rubber ring
is represented by a constant torsional stiffness (KKV) and torsional
damping coefficient (CKV). The differential equation of motion
for the inertia ring is thus expressed as

Ji
€hi ¼ KKVðhh � hiÞ þ CKV

_hh � _hi

� �
(26)

In the Maxwell model used for describing the rubber ring,
shown in Fig. 12(b), the torque developed by the rubber ring is
divided into three components, namely, the elastic torque, the
visco-elastic torque, and the friction torque. These can be, respec-
tively, obtained from the elastic torsional stiffness (Ke), the visco-
elastic stiffness (KMv), the damping coefficient (CMv), and the
friction torque (Tf ), as described in Secs. 2.2 and 2.3. The equiva-
lent torsional stiffness (KMeq) and the damping coefficients (CMeq)
are derived from the elastic stiffness, visco-elastic stiffness, and
damping and are expressed as

KMeq ¼
x2C2

MvKMv

K2
Mv þ x2C2

Mv

þ Ke CMeq ¼
CMvK2

Mv

K2
Mv þ x2C2

Mv

(27)

The differential equation of motion for the inertia ring is subse-
quently obtained considering the equivalent stiffness and damping
properties in addition to the friction torque such that

Ji
€hi ¼ KMeqðhh � hiÞ þ CMeq

_hh � _hi

� �
þ Tf (28)

The Tf in Eq. (28) is friction torque and the relation between
the friction torque and angle is the same as that shown in Fig. 4.

In the fractional derivative model of the TVA, shown in
Fig. 12(c), the torque developed by the rubber ring is also divided
into three components, as in the case of the Maxwell model.
While the elastic and friction torque components are identical to
those obtained for the Maxwell model, the visco-elastic torque is
defined as a function of the inner ring deformation, as described in
Eq. (14) [18]

Tv ¼ BDaðhh � hiÞ (29)

In the above relation, B is a coefficient, exponent a is the order
of fractional derivative that ranges from 0 to 1, and Dað•Þ repre-
sents the time derivative of function ð•Þ of order a. The differen-
tial equation of motion for the inertia ring is subsequently
obtained as

Ji
€hi ¼ Keðhh � hiÞ þ BDaðhh � hiÞ þ Tf (30)

3.3 Estimations of the Natural Frequency of a Rubber-
Damped TVAs. For a rubber-damped TVA with an irregular
shape of the hub, as shown in Fig. 13, the torsional stiffness K can
be determined from [25]

K ¼ 4pG

ðL

0

r1 xð Þ2r2 xð Þ2

r1 xð Þ2 � r2 xð Þ2
dx (31)

where r1ðxÞ and r2ðxÞ are the outer radius of the hub and inner
radius of the inertia ring, respectively, which are function of axial
displacement x of the hub. L is width of the rubber ring, which
defines the domain of integration. In the above relation, G is shear
modulus of the rubber specimen, which represents the shear mod-
ulus GKV in the Kelvin–Voigt constitutive model, Ge in the Max-
well and the fractional derivative constitutive models, and GMv in

Fig. 12 TVA model employing different models of the rubber ring: (a) Kelvin–Voigt model, (b) Maxwell model, and (c) frac-
tional derivative model

Fig. 13 TVA with an irregularly shaped hub (1-inertia ring;
2-rubber specimen; 3-hub)
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the Maxwell constitutive model. Equation (31) can thus be used to
determine the elastic stiffness Ke in the Maxwell and fractional
derivative models using the shear modulus parameters estimated
in Sec. 2.3.

The damping coefficient of the rubber specimen in TVA with
an irregularly shaped hub can be obtained from [21]

C ¼ 4pg
ðL

0

r1 xð Þ2r2 xð Þ2

r1 xð Þ2 � r2 xð Þ2
dx (32)

The above equation yields damping constants CKV and CMv of
the Kelvin–Voigt and Maxwell models, respectively, by substitut-
ing for g by the estimated constitutive constants gKV and gMv

(Sec. 2.3). For rubber-damped TVAs with a regular shaped hub
(cylindrical), the mean of the inner and the outer radii of the rub-
ber ring, r0, is constant. In this case, maximum shear stress (sf max)
can be related to maximum friction torque (Tf max) as:

Tf max ¼ sf max � Ac � r0 ¼ sf max � 2pr0L � r0 ¼ 2psf maxr2
0L (33)

where Ac is area of the rubber ring.
For a TVA with irregularly shaped hub (Fig. 13), the relation-

ship between sf max and Tf max is obtained from

Tf max ¼ 2psf max

ðL

0

r0ðxÞ2dx (34)

Solutions of Eqs. (31)–(34) permit the estimations of torsional
stiffness and damping provided by the rubber ring of a rubber-
damped TVA. The friction torque within the hub and the inertia
ring can be further obtained using the constitutive model parame-
ters of the rubber specimen.

3.3.1 Kelvin–Voigt Model. Using the above-estimated stiff-
ness and damping parameters of the Kelvin–Voigt model, the nat-
ural frequency of a rubber-damped TVA can be obtained from

fKV ¼ fKVn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KKV

Ji
1� C2

KV

4KKVJi

� �s
(35)

where fKVn is the undamped natural frequency of a rubber-damped
TVA obtained from the Kelvin–Voigt model and f is the damping
ratio. From the above relation, it is evident that the natural fre-
quency of the TVA remains constant, irrespective of the excitation
magnitude and frequency.

3.3.2 Maxwell Model. From the equation of motion of the
inertia ring based upon the Maxwell model of the rubber ring, Eq.
(28), it is evident that the equivalent stiffness and damping coeffi-
cients (KMeq and CMeq) are dependent on the excitation frequency,
as seen in Eq. (27). Furthermore, the friction torque (Tf ) is
dependent on the excitation amplitude. The natural frequency of
the TVA thus cannot be obtained directly from Eq. (28). Equation
(28), however, can be numerically solved for the frequency
response characteristics of the TVA under constant amplitude
angular excitation of the hub. The natural frequency for a given
excitation amplitude is then estimated as the frequency corre-
sponding to peak magnitude ratio jhi=hhðxÞj. As an example, Fig. 14
illustrates the magnitude ratio response of the TVA model employ-
ing Maxwell model of the rubber ring considering 40% compres-
sion ratio of the rubber ring and 0.01 deg angular excitation
amplitude applied to the hub. The frequency response reveals peak
magnitude ratio near 393 Hz, which is considered as the natural fre-
quency of the TVA for the given compression ratio and excitation
amplitude. The dependence of the natural frequency of the TVA on
the excitation amplitude is further obtained through repeated solu-
tions of Eq. (28) under different amplitudes of excitation. The
results are discussed in Sec. 3.3.3.

3.3.3 Fractional Derivative Model. The natural frequency of
the rubber-damped TVA model employing fractional derivative
model of the rubber ring is estimated using the method described
above for the Maxwell model. The nonlinear equation of motion
of the inertia ring, Eq. (30), is solved in a similar manner under
different amplitudes of excitation. The solutions, however,
involved discretization of the visco-elastic moment term, Tv ¼
BDaðhh � hiÞ in the following manner [17]

TvðnDtÞ ¼ BDt�a
Xn�1

j¼0

fAjþ1½hhðnDt� jDtÞ � hiðnDt� jDtÞ�g

(36)

In the above equation, Ajþ1 are the Grunwald factors, given by

Ajþ1 ¼
C j� að Þ

C �að ÞC jþ 1ð Þ (37)

where Cð•Þ is the Gamma function. The equation of motion, Eq.
(30), is subsequently expressed in the discrete form considering
the time step Dt as

hi nDtþDtð Þ¼ 2Ji

Dt2
�Ke

� �
hi nDtð Þ� Ji

Dt2
hi nDt�Dtð Þ

�

þKehh nDtð ÞþBDt�a
Xn�1

j¼0

Ajþ1 hh nDt� jDtð Þ½
�

�hi nDt� jDtð Þ�
	
þTf nDtð Þg

. Ji

Dt2

� �
(38)

The fractional derivative model parameter B in the above
expression is obtained considering the viscous torque and viscous
strain relationship. For the TVA with a uniform cylindrical hub,
the viscous torque Tv is obtained from the shear force Fv devel-
oped along the circumference such that

Tv ¼ Fvrh ¼ svArh (39)

where A is the contact area between the rubber ring and the hub
and rh is the inner radius of the rubber ring. Since the mean radius
r0 is significantly greater than the ring thickness, the visco-elastic
torque can be expressed as

Tv ¼ svAr0 (40)

Assuming small deformations, the angular deformation of the
rubber ring is also related to its tangential displacement x as

Fig. 14 Frequency response of the rubber-damped TVA
employing Maxwell mode of the inertia ring (compression ratio:
40%; excitation amplitude: 0.01 deg)
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Dh ¼ hh � hi ¼
x

r0

(41)

The definition of the compression ratio together with incom-
pressibility of the rubber ring, described in Eqs. (8) and (9), yields

n ¼ h0 � h

h0

(42)

2pr0L0 � h0 ¼ 2pr0L � h (43)

where h0 and h are heights of rubber ring before and after com-
pression, respectively, and L0 and L are the lengths before and
after compression. Considering that c ¼ x=h, the shear stress in
the fractional derivative constitutive model can be expressed in
terms of the lateral displacement as

sv ¼ mDa x

h
(44)

The above relation together with those for the visco-elastic tor-
que in Eqs. (29) and (40) yields

BDa hh � hið Þ ¼ mAr2
0Da hh � hið Þ

h
(45)

The constitutive model constant B is obtained upon simplifying
the above relation and substituting for A in terms of compression
ratio, A ¼ 2pr0L ¼ ð2pr0L0Þ=ð1� nÞ, as

B ¼ mAr2
0

h
¼ 2pr3

0mL0

h0 1� nð Þ2
(46)

The computed value of B is used to determine the visco-elastic
torque Tv in Eq. (36), and Eq. (38) is subsequently solved for

frequency response of the rubber-damped TVA model employing
the fractional derivative model of the rubber ring under the given
constant excitation magnitude. The geometric parameters of the
rubber ring are taken as r1¼ 47 mm, r2¼ 50 mm, r0¼ 48.5 mm,
L0¼ 19.2 mm, and h0¼ 5 mm, while Ji¼ 0.0062 kg/m2. Figure
14(b) illustrates the magnitude ratio response of the TVA model
employing the fractional derivative model of the rubber ring con-
sidering 40% compression ratio and 0.01 deg angular excitation
amplitude. The magnitude ratio approaches the peak value near
366 Hz, which is considered as the natural frequency of the TVA
for the given compression ratio and excitation amplitude. The
dependence of the natural frequency of the TVA on the excitation
amplitude is further obtained through repeated solutions under dif-
ferent amplitudes of excitation. The results are discussed in Sec-
tion 3.4.

3.4 Comparisons of the Natural Frequency of a Rubber-
Damped TVA Estimated From Different Rubber Ring
Models. The natural frequency of the rubber-damped TVA model
employing different constitutive models of the rubber rings is
evaluated under different excitation magnitudes and compared in
Fig. 15. The results are obtained considering the above-mentioned
geometric parameters of the rubber ring and 40% compression
ratio. The figure also presents the natural frequencies estimated
from the measured FRF. The relative errors of each constitutive
model with respect to the measured frequencies are also summar-
ized in Table 6. The results show that the Kelvin–Voigt model
owing to its constant stiffness and damping constants yields con-
stant natural frequency of the TVA for the entire range of excita-
tion magnitudes. The relative error between the model-predicted
and measured frequencies, however, decreases with increasing
excitation magnitude, suggesting that the constant model parame-
ters could be considered valid only under higher excitation
magnitudes.

The Maxwell and fractional derivative models of the rubber
ring exhibit decreasing natural frequencies of the TVA with
increasing excitation amplitudes. This tendency is also evident
from the measured frequencies, as seen in Fig. 15. The Maxwell
model, however, exhibits relatively larger deviations from the
measured frequencies compared to the fractional derivative
model. Moreover, the error between measured and estimated fre-
quencies from the Maxwell model increases substantially with
increasing excitation magnitude, and approaches as high as 36.7%
under 0.1 deg excitation. This suggests that the Maxwell model
could be considered valid under only very small excitation ampli-
tudes. The fractional derivation model provides more effective
estimations of the natural frequencies over the entire range of
excitation magnitudes considered in the study. The relative error
ranges from 1.67% to 6.83% for the entire range of excitations.
This is attributed to the fact that the fractional derivative model
constant B strongly depends upon the excitation amplitude, as
seen in Eq. (46), in addition to the friction torque. The Maxwell
model, on the other hand, considers the amplitude dependence of
the friction torque alone. From the view point of engineering
applications, it can be deduced that the proposed fractional deriva-
tive model together with the model parameters identification
methods could provide reasonably accurate estimation of natural

Fig. 15 Comparisons of natural frequencies predicted from
the rubber-damped TVA models with those obtained from the
measured frequency response characteristics under different
excitation amplitudes

Table 6 Relative errors between the calculated and measured natural frequency of a TVA

Relative error (%)

Excitation amplitude Ae (deg) Kelvin–Voigt model Maxwell model Fractional derivative model

0.01 21.1 9.2 1.67
0.03 12.9 17.5 5.83
0.05 7.79 22.7 6.83
0.07 2.07 26.3 4.14
0.1 0.70 36.7 6.29
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frequencies of a rubber-damped TVA prior to the prototype
designs.

4 Conclusions

(1) The study proposed methods for experimental characteriza-
tions of shear properties of rubber specimens considering dif-
ferent compression ratios and natural frequencies of a
rubber-damped TVA under a range of excitation magnitudes.
It is shown that the static and dynamic properties of the rub-
ber material are strongly dependent upon the compression ra-
tio, while the natural frequency of a rubber-damped TVA
decreases with increasing excitation magnitude.

(2) It is concluded that the fractional derivative model yields
more accurate prediction of dynamic stiffness of the rubber
over wide ranges of frequency and compression ratio when
compared to the Maxwell and Kelvin–Voigt models. The
rubber material models were subsequently used to estimate
natural frequency of the TVA comprising the rubber ring,
and its dependence upon excitation magnitude and thereby
the rubber ring deformation.

(3) It is shown that the Kelvin–Voigt model with constant and
excitation-independent stiffness and damping parameters
cannot describe the decreasing tendency of natural fre-
quency with increasing excitation magnitude. The natural
frequencies estimated from the Maxwell and fractional
derivative models revealed this tendency, while the Max-
well model revealed significantly larger deviations from the
measured frequencies, especially under higher excitation
magnitudes. The fractional derivative model provided more
accurate estimations of natural frequencies over the entire
range of excitation magnitudes.

(4) It is concluded that the proposed fractional derivative
model together with the model parameters identification
methods could be used to estimate natural frequency of a
TVA before prototype, thus reducing trails and errors for
determining natural frequency of a TVA.
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