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Abstract Resilient observer design for Cyber-Physical Systems (CPS) in the pres-
ence of adversarial false data injection attacks (FDIA) is an active area of research.
Existing state-of-the-art algorithms tend to breakdown as more and more knowl-
edge of the system is built into the attack model; also as the percentage of attacked
nodes increases. From the view of optimization theory, the problem is often cast as
a classical error correction problem for which a theoretical limit of 50% has been
established as the maximum percentage attacked nodes for which state recovery is
guaranteed. Beyond this limit, the performance of `1-minimization based schemes,
for instance, deteriorates rapidly. Similar performance degradation occurs for other
types of resilient observers beyond certain percentages of attacked nodes.

In order to increase the corresponding percentage attacked nodes for which state
recoveries can be guaranteed, researchers have begun to incorporate prior informa-
tion into the underlying resilient observer design framework. For the most pragmatic
cases, this prior information is often obtained through a data-driven Machine Learn-
ing process. Existing results have shown strong positive correlation between the
maximum attacked percentages that can be tolerated and the accuracy of the data-
driven model. Motivated by these results, this chapter examines the case for pruning
algorithms designed to improve the Positive Prediction Value (PPV) of the result-
ing prior information, given a stochastic uncertainty characteristics of the underlying
Machine Learning model. Theoretical quantification of the achievable improvement
is given. Simulation results show that the pruning algorithm significantly increases
the maximum correctable percentage of attacked nodes, even for Machine Learning
model whose prediction power is comparable to random flip of a coin.
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1 Notation

The following notations and definitions are used throughout the whole paper:
R,Rn,Rn×m denote the space of real numbers, real vectors of length n and real
matrices of n rows and m columns respectively. R+ denotes the space of positive
real numbers. Normal-face lower-case letters (e.g. x ∈ R) are used to represent real
scalars, bold-face lower-case letters (e.g. x ∈ Rn) represent vectors, while normal-
face upper-case letters (e.g. X ∈ Rn×m) represent matrices. X>. denotes the trans-
pose of matrix X . 1n and In denote vector of ones and identity matrix of size n
respectively. Let T ⊆ {1, . . . ,n}, then for a matrix X ∈ Rm×n, XT ∈ R|T |×n is the
sub-matrix obtained by extracting the rows of X corresponding to the indices in T .
T c denotes the complement of a set T , and the universal set on which it is defined
will be clear from the context. The support of a vector x ∈ Rn, a set of the indices of
nonzero entries, is denoted by:

supp(x), {i⊆ {1, . . . ,n}|xi 6= 0}.

If |supp(x)|= k, we say x is a k-sparse vector. Moreover, Σk ⊂ Rn denotes the set of
all k-sparse vectors in Rn. The operator argsort ↓ (x) denotes a function that returns
the sorted indices of vector x in descending order of the magnitude of xi. The symbol
& denotes logical ”AND” operator. The symbol ∗ denotes the convolution operator
for vectors. The symbol ◦ denotes element-wise multiplication of two vectors, z =
x◦y⇒ zi = xiyi. The expression x∼B(1, p) means that random variable x follows
the Bernoulli distribution with Pr{x = 1} = p. The weighted 1-norm of a vector
z ∈ Rn with the weight vector w ∈ Rn is given by:

‖z‖1,w ,
n

∑
i=1

wizi.

2 Introduction

As the backbone of future critical infrastructures, Cyber-physical Systems (CPS)
are complicated integration of computation, communication, and physical compo-
nents. Security, within the context of CPSs, poses more challenges compared to
both traditional information technology (IT) security and operational technology
(OT) security due to the temporal dynamics brought by physical environment and
the heterogeneous nature of operation of CPSs [1]. In the context of CPS, failures
induced by malicious attacks are beyond well studied random failures in reliabil-
ity engineering or well-defined uncertainty classes in robust control. Moreover, the
coupling of computation and communication with distributed sensing and actuation
components increases the vulnerability to attacks [2, 3, 4, 5].

The control design for CPSs usually comprises of an observer to estimate the
states of the physical system and a controller to compute control commands based
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Fig. 1 Locations of Attacks in CPS in the context of security-control (SA: stealth attack, CA:
covert attack, RA: replay attack, FDIA: false data injection attack, DoS: detial of service)

on the state estimation. Thus, the control system receives diverse information from
measurement substations and distribute the computed control commands to a num-
ber of actuators through a communication network [6]. Thus, an elaborate attack
on a CPS can be designed by considering the networked closed-loop interaction
between the cyber and physical agents. Furthermore, the disperse geographical dis-
tribution and abundance of unmanned facilities also provide malicious attackers the
opportunity to construct coordinated attacks. These attacks, studied extensively in
literature, either targets the system integrity [7], such as stealth attacks [12], replay
attacks [14], covert attacks [15] and false data injection attacks (FDIA) [16] or the
availability [7], such as dential of serives (DoS) [8]. The locations of those attacks
are shown in Fig. 1. It was shown in [9, 10, 11], that if FDIA is defined prop-
erly, it can exploit certain underlying vulnerabilities of bad data detection (BDD)
schemes in order to force an erroneous state estimation using sparse measurement
corruption. Consequently, in this chapter, we consider the resiliency of a class of ob-
servers against FDIA. If the observer estimates, using compromised measurements,
are close to the true states, then control performance can be guaranteed with any
control design which is robust to estimation error.

One of the pioneering works on resilient observer was presented in [17], where an
unconstrained `1 observer was proposed to achieve exact state recovery. A necessary
and sufficient condition for exact recovery is that less than half of the systems mea-
surements be compromised. The authors in [18] proved this condition from an inter-
esting aspect of s-sparse observability and proposed a event-triggered Luenberger
observer against FDIA. In [19], the authors presented a more systematical work on
the observability of the linear system under attacks and proposed a Gramian-based
estimator. The authors in [20] and the authors in [21] both considered resilient esti-
mation in the presence of noise and attacks at the same time and constructed `1-`2
observers. The authors in [22] considered robust estimation scheme against FDIA, in
which local robust estimators and global fusion are combined to achieve resilient-
robust estimation. Readers can also refer to [23] for feasible resilient estimation
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methods by Satisfiability Modulo Theory (SMT) solvers. However, all the above
observers would not achieve successful resilient estimation when 50%, or more, of
system measurements are attacked. Equivalently, the system is not 2k-detectable,
where k is the number of attacks. This is a significant limitation, since it requires
that there be twice as much as needed measurement stations installed for a CPS
and the system has to be observable for every combination of 50% of the total sen-
sors. This is a property that is currently not achieved by most critical cyber-physical
critical infrastructures like the power grid.

In order to increase the corresponding percentage of attacked nodes for which
state recoveries can be guaranteed, researchers have begun to incorporate prior in-
formation into the underlying resilient observer design framework. There are mainly
three kinds of prior information considered in literature: state prior [24], measure-
ment prior [26, 25], support prior [27, 16]. In [24], three types of state prior was
discussed: sparsity information of the estimated states, (α,n0) sparsity information,
where the estimated states are assumed to have α instead of 0 in the sparsity form,
and side information which is the knowledge of the initial states from the physical
attribution of the system and cannot be manipulated by malicious agents. Although
the resiliency of the observer can be improved with such knowledge of the states
of system, it is very difficult to obtain such information in practice. This will re-
quire prior determination of the state distribution for all operating conditions of an
uncertain, large-scale nonlinear, and sometimes hybrid system!

Support prior is the estimated information of attack locations, which can be given
by some data-driven localization algorithm or learning-based anomaly detection
methods, such as watermark-based methods [28], moving-target based approach
[29], distributed support vector machine [30], deep learning neural network [31],
and many more [32, 33, 34, 35]. Although the localization algorithms can be readily
defined and are very useful for monitoring purposes, using this kind of support prior
for resilient estimation has two main drawbacks; imprecise classification and high
training price. This limits their applicability in piratical purposes. In this chapter, we
examine a class of pruning methods to generate a feasible pruned support prior with
predetermined precision guarantees. Coupling the pruning algorithm with any local-
ization algorithm can significantly improve the resulting precision, which directly
improves the resiliency of the underlying resilient estimation process. This means
less precise localization algorithm can be tolerated, thus slashing the required train-
ing price. The initial pruning idea was introduced in [27], analyzed and improved in
[36]. In this chapter, a more detailed mathematical foundation is given, in addition
to an improved implementation.

Measurement prior is a collection of additional auxiliary information about sys-
tem measurements that is unknown to the malicious attackers. A direct use of mea-
surement prior in resilient observer design was shown in [25, 26, 37] to improve the
limit of the percentage of compromised measurement for which exact recovery is
guaranteed from 50% to 80%. Also, the watermark-based detection approaches [28]
and moving-average detection approaches [29] both use the additional information
in an authentication layer in order to detect the attacks. Thus, against measurement
attacks, the measurement prior and support prior are related. An advantage of mea-
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surement prior is its expansibility to the authentication layer. The more measure-
ment priors that can be constructed usually provides better detection precision. In
this chapter, we will utilize a measurement prior constructed by using data-driven
auxiliary model between auxiliary variables and the system measurements. The at-
tacked measurements will then be detected if they cannot be explained by both the
system dynamics and the measurement model prior with high likelihood, thus re-
ducing the resulting attack surface.

The reminder of this chapter is organized as follows: In Section 3, concurrent
models of CPS, including physical model, monitoring model, thread model, prior
model and pruning algorithm are given; in Section 4, the resilient observer design
with data-driven measurement pruning is given; in Section 5, numerical simulation
and application examples are given to demonstrate the performance of the designed
observer compared to other resilient observers in severe adversarial environment;
concluding remarks follow in Section 6.

3 Concurrent Models

Fig. 2 Concurrent model on CPS (xa is an auxiliary state used in the prior model)

To discuss the resilient observer design, relevant model developments are dis-
cussed in this section. Since CPS is a seamless integration of computational, phys-
ical and communication network systems, a single-layer model cannot sufficiently
describe the complex characteristics of CPS. Also, as a closed-loop system, sepa-
rately and independently modeling the seperate layers cannot capture the tight in-
teraction between the cyber and physical layers [38]. Concurrent modeling has been
used a good way to describe the complex operation on CPS [39], where different
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models in different hierarchy work concurrently. As shown in Fig. 2, this small ver-
sion of CPS has four concurrent loops; the physical dynamical loop, prior generation
loop, monitoring path, and attack injection.

The rest of the subsections are dedicated to discuss, in more details, the mod-
eling aspects for each layer, the underlying assumptions and connections with the
subsequent resilient observer design.

3.1 Physical Model and Monitor

A linear time invariant (LTI) model is considered to describe the physical behaviour
of the CPS in Fig. 2.

xi+1 = Axi

yi =Cxi + ei,
(1)

where xi ∈Rn is the state vector at time i, yi ∈Rm is the measurement vector, ei ∈Rm

is the time-varying attack-noise vector. The measurement attacks and noises are
modelled as additional error signals. Control inputs may be included in the model
above. However, since control inputs are generally irrelevant to state estimation
problems, we suppress it in the model considered here.

The following assumptions are used in subsequent developments:

1. The pair (A,C) is observable.
2. The measurements are redundant (m > n).
3. The attack signal is possibly unbounded and sparse, ei ∈ Σk for some k < m.
4. The attack-free part of ei is bounded, ∑

i∈T c
|ei|< ε , for some ε > 0.

By iterating the system model (1) T time steps backwards, the T -horizon obser-
vation model is given by

yT = Hxi−T+1 + eT , (2)

where yT = [y>i y>i−1 · · ·y>i−T+1]
> ∈ RT m is a sequence of observation in the mov-

ing window [i− T + 1 i], xi−T+1 ∈ Rn is the state vector at time i− T + 1, eT =
[e>i e>i−1 · · ·e>i−T+1]

> is the sequence of attack-noise vectors in the same moving
window, H ∈ RT m×n is the observation matrix such that

H =


CAT−1

...
CA
C

 .
The following definitions formalize the notions of a decoder and a detector which

are used subsequently.

Definition 1 (Decoder). Given an observable pair (A,C) and a horizon parameter
T , a decoder D : RT m 7→ Rn is an operator given by
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x̂ = D(yT |H) = argmin
x∈Rn

‖yT −Hx‖1, (3)

where yT = {yi,yi−1, · · · ,yi−T+1} is a moving-windowed measurement vector his-
tory and x̂ ∈ Rn is the resulting estimated initial state vector xi−T+1. When the pa-
rameter is clear from context, they are dropped from the argument list for clarity.

Definition 2 (Detector). Given the measurements yT ∈ RT m taken in the moving
window [i−T +1 i], a detector based on the `1 decoder is mapping of the form:

ΨT : {yT} 7→ {Ψ1,Ψ2}

where, Ψ1 ∈ {0,1}1 is the first output argument indicating whether or not the mea-
surement yT is attacked, Ψ2 ∈ 2{1,2,··· ,m} is the second output argument indicating
the support of attack locations.

The decoder-detector pair constitutes a monitor scheme for the system (1), as
shown below:

Remark 1 (Residual-based Monitor mechanism). Given a threshold value ε0 > 0, the
monitor returns Ψ1 = {0} in the first output argument for a given measurement vec-
tor history yT = {yi,yi−1, · · · ,yi−T+1} if there exists a corresponding state trajectory
X̂T = {x̂i, x̂i−1, · · · , x̂i−T} such that

‖x̂ j+1−Ax̂ j‖ ≤ ε0, j = i−T, · · · , i−1
‖y j−Cx̂ j‖ ≤ ε0, j = i−T +1, · · · , i.

Otherwise, the monitor returns Ψ1 = {1} in the first output argument and also the
support of the sparsest attack trajectory eT = {ei,ei−1, · · · ,ei−T+1} such that

‖x̂ j+1−Ax̂ j‖ ≤ ε0, j = i−T, · · · , i−1
‖y j−Cx̂ j− e j‖ ≤ ε0, j = i−T +1, · · · , i.

3.2 Threat Model

Following the setup above, we give a formal definition of successful false data injec-
tion attack (FDIA) and prescribe conditions under which a FDIA will successfully
corrupt a decoder while evading detection by the residual-based monitor. To design
a successful FDIA, the following assumptions are made, which are widely used in
literature [11, 40]:

1. The attacker has perfect knowledge of the system dynamics in (1)
2. The attacker can inject arbitrary bias at the compromised nodes T ⊂ {1, · · · ,m}.

1 0: safe, 1: unsafe
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3. The number of nodes the attacker can simultaneously compromise at any given
time is bounded. In other words, the attackers has limited resources.

Definition 3 (Successful FDIA [11]). Consider the CPS in (1) and the correspond-
ing measurement model (2). Given a positive integer k < m, the attack sequence
eT ∈ ΣT k is said to be (ε,α)-successful against the decoder-detection pair described
above if

‖x?−D(yT )‖2 ≥ α, and ‖yT −HD(yT )‖2 ≤ ε, (4)

where yT = y?T +eT with y∗T ∈ RT m being the true measurement vector, and x? is the
true state vector.

In the above definition, k quantifies the attack sparsity level per time. Specially, it
is the maximum number of attacks at each time index. Given the support sequence
T = {Ti Ti−1 · · ·Ti−T+1} with |Ti| ≤ k. Let xe be an optimal solution of the opti-
mization program

Maxmize : ‖HT x‖1,

Subject to : ‖HT cx‖1 ≤ ε.
(5)

Then a FDIA can be defined as

eT = HT xe, eT c = 0. (6)

The following theorem shows the condition under which the defined FDIA above
is (ε,α)-successful for the given attack support T .

Theorem 1. Suppose there exists a vector w ∈ range(H) such that

‖wT ‖1 > ‖wT c‖1, (7)

then the FDIA in (6) is (ε,α)-successful against the decoder-detector pair in Defi-
nition 1 and Remark 1 for all

α ≤ σ1−1√
|T |σT −σT c

ε,

with |T |> σ2
T c

σ
2
T

, where σT and σT c are the largest and smallest non-zero singular

values of HT and HT c respectively, and

σ1 = max
v∈Rn\{0}

‖HT v‖1

‖HT cv‖1

Proof. For the optimization problem in (5), let x = αv, where v ∈ Rn is arbitrary.
Then,

‖HT xe‖1 ≥ max
|α|‖HT c v‖1≤ε

|α|‖HT v‖1 ≥
‖HT v‖1

‖HT cv‖1
ε.

Since v is arbitrary, it follows that ‖HT xe‖1 ≥ σ1ε .
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Next, the attacked measurement yT can be written as

yT = Hx?+P
[

HT

0

]
xe,

with an appropriate permutation matrix P satisfying H = P
[

HT

HT c

]
, where x? ∈ Rn

is the unknown true state vector.
Consider a projection

x1 = argmin
x∈Rn

∥∥∥∥Hx−P
[

HT

0

]
xe

∥∥∥∥
1
.

It follows, by the optimality of x1, that

‖HT (x1−xe)‖1 +‖HT cx1‖1 ≤
∥∥∥∥Hxe−P

[
HT

0

]
xe

∥∥∥∥
1
≤ ‖HT cxe‖1 ≤ ε, (8)

Using the reverse triangle inequality on ‖HT (x1−xe)‖1 yields

‖HT xe‖1−‖HT x1‖1 +‖HT cx1‖1 ≤ ε,

which implies that

‖HT x1‖1−‖HT cx1‖1 ≥ ‖HT xe‖1− ε√
|T |‖HT x1‖2−‖HT c x1‖2 ≥ (σ1−1)ε

(
√
|T |σT −σT c)‖x1‖2 ≥ (σ1−1)ε

‖x1‖2 ≥
(σ1−1)ε√
|T |σT −σT c

.

Since |T |> σ2
T c

σ
2
T

, the denominator of the right-hand side is positive. Moreover, we

can choose a vw ∈ Rn such that Hvw = w, where w satisfies the condition in (7).
This implies that there exist a vw ∈ Rn such that σ1 ≥ ‖HT vw‖1

‖HT c vw‖1
> 1. Thus, the given

upper bound on ‖x1‖2 is always positive.
Furthermore, by the decoder in (3),

x̂ = argmin
x∈Rn

‖yT −Hx‖1

= argmin
x∈Rn

∥∥∥∥H(x?−x)+P
[

HT

0

]
xe

∥∥∥∥
1
= x?+x1.

Thus,

‖x?−D(yT )‖2 = ‖x1‖2 ≥
(σ1−1)ε√
|T |σT −σT c

.
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Moreover, the residual is given by

‖yT −HD(yT )‖2 =

∥∥∥∥P
([

HT

HT c

]
x1−

[
HT

0

]
xe

)∥∥∥∥
2

≤
∥∥∥∥[HT

HT c

]
x1−

[
HT

0

]
xe

∥∥∥∥
1

≤ ‖HT (x1−xe)‖1 +‖HT cx1‖1 ≤ ε.

Thus, by Definition 3, the FDIA in (6) is (ε,α)-successful against the decoder-
detector pair in Definition 1 and Remark 1 for all

α ≤ σ1−1√
|T |σT −σT c

ε.

Remark 2. If, in addition, null(HT c)\null(HT ) 6= /0, let vn ∈ null(HT c)\null(HT ),
then ‖HT cvn‖1 = 0 but ‖HT vn‖1 > 0. Thus, σ1 ≥ ‖HT v‖1

‖HT c v‖1
is infinite, which implies

that the FDIA in (6) is (ε,α)-successful for all ε,α ∈ R+.

3.3 Data-driven Auxiliary Measurement Prior

In this subsection, we present a data-driven auxiliary measurement prior based on a
generative probabilistic regression model constructed using Gaussian process (GP).
This prior model is a mapping from the chosen auxiliary variables to the observed
measurements, which plays a role of additional authentication layer.

Given a dataset Z,Y , where Z ∈ Rp×N is the matrix collecting the auxiliary states
columnwise, Y ∈ Rm×N is the matrix of the corresponding observed measurements,
the goal is to learn the underlying function f : Rp→ Rm such that

yi = f (zi)+ ε, i = 1, · · · ,N, (9)

where ε ∼N (0,σ2). To achieve this goal, certain restrictions have to be made on
the properties of the underlying function. Otherwise, all potential functions fitting
the training dataset would be equally valid. As a means of regularization, we assume
that the underlying function f is restricted to a class defined by a given Gaussian
process. A Gaussian process (GP) is a generalization of Gaussian probabilistic dis-
tribution [41]. It is a collection of random variables, every finite subset of which are
jointly Gaussian [42]. Gaussian process regression (GPR) uses GPs to encode prior
distribution over functions f . Thus, suppose f ∈ GP, then it satisfies the following
distribution point-wise:

f (z)∼N (m(z),k(z,z′)), (10)
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where m(z) = E[ f (z)] is the mean function and k(z,z′) = E[( f (z)−m(z))( f (z′)−
m(z′))>] is the covariance function encoded, apriori, by the kernel function k. The
model of GP contains two parts: a joint distribution model and a kernel function.
Kernel functions capture the similarity between the function’s ( or model’s ) outputs,
for given inputs. The design of kernel function depends on the prior knowledge of
the process that generated the data in question. For example, suppose we know
that the output of the process changes slowly with respect to change in input, the
smoothness prior knowledge can be modeled in the kernel function used by the
GP. One of commonly used kernel function is the square exponential covariance
function (also called RBF), given by [43]

k
(
z,z′
)
= Aexp

{
−‖z− z′‖2

2l

}
, (11)

where, the hyperparameters A and l are amplitude coefficient and describing single
scaling factor on the influence of nearby observations respectively. For a compre-
hensive summary of kernel functions, the readers are directed to [43].

Given a query point z? ∈ Rp for the auxiliary measurement, by applying Bayes’s
rule, the posterior distribution for j-th observed measurement y j = f j(z) is given by

p(y j|z,D) = N (µ j(z),Σ j(z)), (12)

where,

µ j(z) = k(z)>(K +σ
2
j I)−1Y>j

Σ j(z) = k(z?,z?)−k(z)>(K +σ
2
j I)−1k(z), j = 1,2, · · · ,m,

(13)

and

K =

k(z1,z1) · · · k(z1,zN)
...

. . .
...

k(zN ,z1) · · · k(zN ,zN)

 ∈ RN×N , k(z) =

k(z1,z?)
...

k(zN ,z?)

 ∈ RN

are covariance matrix on training dataset, and covariance vector between training
auxiliary states zi, i = 1,2, · · · ,N and the query point z? respectively.

The overall observed measurements’ posterior distribution is then given by

p(y | z,D) =
m

∏
j=1

N (µ j(z),Σ j(z)) = N (µ(z),Σ(z)), (14)

where,

µ(z) =

 µ1(z)
...

µm(z)

 , Σ(z) =

Σ1(z)
. . .

Σm(z)

 .
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Next, the localization algorithm based on the trained GPRs in (13), (14) is given
in Algorithm 1. Based on the localization algorithm, if a measurement cannot be
explained by the trained prior model, it will be recognized as being attacked. In
other words, the prior model provides an additional layer of security by: 1) requiring
the attacker to have knowledge of the auxiliary model and the parameters, and 2)
limiting the magnitude of possible state corruption.

Algorithm 1: Localization Algorithm with Measurement Prior
I. Inputs: y ∈ Rm (real measurement), z ∈ Rp (auxiliary variables)
II. Parameters: m trained GPR models GP
III. Posterior distribution:

GP j(z)→{µ j,Σ j} ∀ j = 1,2, · · · ,m
IV. Calculate Z-score:

z j =
y j−µ j

Σ j

V. Calculate probability:

p j = 1−PX (|x| ≤ |z j|) = 1−
∫
|z j |

e−
x2
2

√
2π
∀ j = 1,2, · · · ,m

VI. Attack support prior:

T = 0m; T j = 1 if p j ≤ 0.5 ∀ j = 1,2, · · · ,m
VII. Outputs: T ∈ Rm, (support prior), p ∈ Rm (confidence)

3.4 Prior Pruning

As shown in previous subsection, an estimated support prior T̂ can be generated
by some machine learning localization algorithms. However, there are major lim-
itations preventing their direct usage as the prior information in resilient observer
design. One is the huge amount of training often needed for high enough precision
will prevent such prior from being deployed for a dynamic observer, where real-time
update is paramount. Another limitation is that the precision of data-driven results
cannot be guaranteed due to their inherent uncertainties. Consequently, several fun-
damental questions emerge, that require significant research efforts to address. For
example, what is the quantitative relation between the resulting resilient estimation
error bound and the auxiliary model uncertainty? In this subsection, a relationship
is derived or such connection and a prior pruning method is considered to mend
some deficiencies in order to improve the degradation due to the uncertainty of prior
model in the final estimation error bound.
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Let T = supp(e) be the unknown actual support of attacked channels. Let the
vector q ∈ {0 1}T m be an indicator of T defined element-wise as:

qi =

{
0 if i ∈T
1 otherwise. (15)

Thus, the output of the localization algorithm T̂ ⊆ {1,2, · · · ,T m} is actually an
estimate of T , and its corresponding indicator q̂ ∈ {0 1}T m is defined similarly
to (15). Consequently, the precision of the support prior is evaluated using positive
prediction value [44] instead of true positive rate, F1 score or other evaluation met-
rics. This is because the only factor affecting the resilient estimation performance is
the error in the estimated prior support of safe nodes T̂ c, which is directly used in
observer.

Definition 4 (Positive Prediction Value, Precision, PPV [44]). Given an estimate
q̂ ∈ {0,1}T m of an unknown attack support indicator q ∈ {0,1}T m, PPV is the pro-
portion of q that is correctly identified in q̂. It is given by

PPV =
‖q◦ q̂‖`0

‖q̂‖`0

. (16)

As will be shown in subsequent sections, the precision PPV is positively corre-
lated to the performance of resilient estimation.

The agreement between T̂ and T can be described using a Bernoulli uncertainty
model since T̂ can be seen as an output of binary classifier. Thus, the following
uncertainty model is considered:

qi = εiq̂i +(1− εi)(1− q̂i), (17)

where εi ∼ B(1,pi), with known pi ∈ R+ generated by Algorithm 1. Here pi =
E[εi] = Pr{εi = 1}. Next, some initial results are given to aid in the subsequent
observer development.

Lemma 1. With respect to the uncertainty model in (17), the PPV defined in (16)
can be expressed as:

PPV =
1
|T̂ c| ∑

i∈T̂ c

εi. (18)

Proof. From (17), it follows that

qiq̂i = εiq̂i.

This implies that

PPV =
‖q◦ q̂‖`0

‖q̂‖`0

=
∑

T m
i=1 qiq̂i

∑
T m
i=1 q̂i

=
1
|T̂ c|

T m

∑
i=1

εiq̂i =
1
|T̂ c| ∑

i∈T̂ c

εi.
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Theorem 2. The support estimate is better than random flip of a fair coin if and
only if

T m

∑
i=1

pi > T mpA (19)

where, pA ∈ (0,1) is the expected fraction of attacked nodes. Moreover, if pA is
the maximum fraction of attacked nodes, then the conclusion is sufficient, but not
necessary.

Proof. Expending (17) yields

qi = 2εiq̂i +1− q̂i− εi

= 1− q̂i− εi +2qiq̂i.

This implies that

εi−1+qi = 2(qiq̂i−
1
2

q̂i).

Summing over i = 1, · · · ,T m and taking expected value of both sides yield

T m

∑
i=1

pi−T m+E[‖q‖`0 ] = 2E
[
‖q◦ q̂‖`0 −

1
2
‖q̂‖`0

]
.

thus,

E
[
‖q◦ q̂‖`0 −

1
2
‖q̂‖`0

]
> 0 iff

T m

∑
i=1

pi > T m−E[‖q‖`0 ], T mpA.

Moreover, if T m− E[‖q‖`0 ] ≤ T mpA, it is straightforward to see that ∑
T m
i=1 pi >

T mpA is only sufficient for E
[
‖q◦ q̂‖`0 +

1
2‖q̂‖`0

]
> 0.

Lemma 2. Given mutually independent Bernoulli random variables εi ∼B(1,pi),
i = 1, · · · ,N, the following holds:

Pr

{
N

∑
i=1

εi = k−1

}
= r(k), k = 1, · · · ,N +1, (20)

where,

r = β ·
[
−s1

1

]
∗
[
−s2

1

]
∗ · · · ∗

[
−sm

1

]
, with β =

N

∏
i=1

pi and si =−
1−pi

pi
.

Proof. 
Pr(∑N

i=1 εi = 0)
Pr(∑N

i=1 εi = 1)
...

Pr(∑N
i=1 εi = N)

=

[
1−p1

p1

]
∗
[

1−p2
p2

]
∗ · · · ∗

[
1−pN

pN

]
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Let Prk = Pr(∑N
i=1 εi = k), taking z-transform yields

Pr0 +Pr1z+Pr2z2 + · · ·+PrNzN = (1−p1 +p1z)(1−p2 +p2z) · · ·(1−pN +pNz)

= p1p2 · · ·pN ·
(

z+
1−p1

p1

)
· · ·
(

z+
1−pN

pN

)
By doing reverse z-transform, it follows that

Pr(∑N
i=1 εi = 0)

Pr(∑N
i=1 εi = 1)

...
Pr(∑N

i=1 εi = N)

=
N

∏
i=1

pi ·
[ 1−p1

p1
1

]
∗ · · · ∗

[ 1−pN
pN
1

]

Now, we are ready to introduce the pruning method. The central idea is: if we
could identify the errors in the prior information, then the precision of prior can be
improved. In fact, the precision of prior will be improved by choosing an appro-
priate subset. However, how to achieve the best pruning performance, quantify the
precision improvement, and improve resukting estimation resiliency are all essential
but open questions. Here, we will give a formal definition of pruning operation, then
provide some answers and give a simple algorithm to achieve sub-optimal pruning
goal.

Definition 5 (Pruning, Pruning operation, PPVη ). Given a prior support estimate
T̂ , pruning operation, with parameter η , is any operation, or sequence of operations,
which returns an updated estimated support prior T̂η ⊂ {1, · · · ,T m} such that

T̂ c
η ⊆ T̂ c.

Also the precision of pruned support prior T̂η is given by

PPVη =
1
|T̂ c

η |
∑

i∈T̂ c
η

εi. (21)

The following theorem quantifies the resulting precision improvement through
the defined pruning operation.

Theorem 3. Given an estimated attack support T̂ ⊆ {1,2, · · · ,T m} with the un-
certainty characteristic described in (17). Let T̂η be a pruned support estimate
satisfying T̂ c

η ⊆ T̂ c, then, for any γ ∈ (01,1),

Pr
{

PPVη − γPPV≥ 0
}
≥
|T̂ c

η |+1

∑
j=1

(
rη( j)

Φ j−1+1

∑
i=1

r̃(i)

)
, (22)

where,
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rη =

 ∏
i∈T̂ c

η

pi

[−sη ,1
1

]
∗
[
−sη ,2

1

]
∗ · · · ∗

[
−s

η ,|T̂ c
η |

1

]
,

r̃ =

 ∏
i∈T̂ c\T̂ c

η

pi

[−s̃1
1

]
∗
[
−s̃2

1

]
∗ · · · ∗

[
−s̃|T̂ c\T̂ c

η |
1

]
,

and Φk = min

{⌈
|T̂ c|
γ|T̂ c

η |
−1
⌉

k, |T̂ c|− |T̂ c
η |

}
, sη ,i =−

1−pT̂ c
η ,i

pT̂ c
η ,i

, s̃i =−
1−pT̂ c\T̂ c

η ,i

pT̂ c\T̂ c
η ,i

.

Proof.

Pr
{

PPVη − γPPV≥ 0
}

=Pr


(

1
|T̂ c

η |
− γ

|T̂ c|

)
∑

i∈T̂ c
η

εi−
γ

|T̂ c| ∑
j∈T̂ c\T̂ c

η

ε j ≥ 0


≥Pr


 ∑

i∈T̂ c
η

εi = k

&

 γ

|T̂ c| ∑
j∈T̂ c\T̂ c

η

ε j ≤

(
1
|T̂ c

η |
− γ

|T̂ c|

)
k


≥
|T̂ c

η |

∑
k=0

Pr


 ∑

i∈T̂ c
η

εi = k

&

 ∑
j∈T̂ c\T̂ c

η

ε j ≤
|T̂ c|k
γ|T̂ c

η |
− k

 .

Since ∑i∈T̂ c
η

εi and ∑ j∈T̂ c\T̂ c
η

ε j are independent, it follows that

Pr
{

PPVη − γPPV > 0
}

≥
|T̂ c

η |

∑
k=0

Pr

 ∑
i∈T̂ c

η

εi = k

Pr

 ∑
j∈T̂ c\T̂ c

η

ε j ≤
|T̂ c|k
γ|T̂ c

η |
− k


≥
|T̂ c

η |

∑
k=0

Pr

 ∑
i∈T̂ c

η

εi = k

Pr

 ∑
j∈T̂ c\T̂ c

η

ε j ≤Φk

 .

Next, by using Lemma 2, the lower bound in (22) is obtained.

The lower bound given by Theorem 3 can be expressed as r>η rΦ where, rΦ ∈
[0,1]|T̂

c
η | is a vector whose entries are functions of |T̂ c|, |T̂ c

η |, γ and r̃. Thus, given
pi, T̂ , γ and a fixed integer lη ≤ |T̂ c|, the pruned support T̂η can be chosen to
maximize r>η rΦ . However, such optimization problem is challenging and potentially
NP-hard due to the index searching operation involved. But a simple heuristic of
returning the indices of the channels with largest pi in T̂ c

η can provide a very good
sub-optimal estimation. This idea is central to the pruning algorithm considered in
this chapter. Fig. 3 shows the comparison of the ordered pruning idea vs. randomly
selecting a subset of T̂ . This illustrative example clearly demonstrates that ordered
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Fig. 3 A comparison between random pruning operation and ordered pruning operation

operation can offer some advantage. Next, one of ordered pruning algorithm is given
in Algorithm 2.

Algorithm 2: Support Prior Pruning Algorithm
I. Obtaining reliable trust parameter
Given reliability level η ∈ (0,1), return the maximum size lη such that lη safe nodes are

correctly localized with a probability of at least η :

lη = max

{
|I |
∣∣∣∣∏
i∈I

pi ≥ η , I ∈ T̂ c

}
. (23)

II. Pruning
A pruned support prior is obtained through a robust extraction:

T̂ c
η =

{
argsort ↓ (p◦ q̂)

}lη
1 . (24)

where, {·}lη
1 is an index extraction from the first elements to lη elements.

For pragmatic reasons, it is important to ensure that lη > 0 in (23). This is guar-
anteed if η is chosen such that at least one node is selected into the pruned set.
Formally, this condition is given by:

η ≤ max
i∈T̂ c

(pi) (25)

Definition 6 (η-successful pruning algorithm). A η-successful pruning algorithm
is any pruning operation, as defined in Definition 5, that achieves:
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Pr
{

PPVη = 1
}
≥ η .

Proposition 1. Given a support prior estimate T̂ generated by an underlying local-
ization algorithm with associated uncertainty model in (17), the pruning algorithm
in Algorithm 2 is η-successful.

Proof. According to (21),

Pr
{

PPVη = 1
}
= Pr

 ∑
i∈T̂ c

η

εi = |T̂ c
η |

= ∏
i∈T̂ c

η

pi.

Based on (23), and (24), we have |T̂ c
η |= |I |= lη , and pi’s in T̂ c

η are the lη largest
values. Thus,

∏
i∈T̂ c

η

pi ≥ ∏
i∈I

pi ≥ η .

4 Pruning-based Resilient Estimation

In this section, we will go through resilient observer designs using `0\`1 minimiza-
tion schemes. Firstly, the unconstrained `1 observer will be stated. Then, we will
give a weighted `1 observer design and state the condition for resilient estimation
with the pruned prior support. Furthermore, the quantified relationship between the
precision of prior support and the resilient estimation performance will be clarified.

Researchers in compressed sensing have paid much attentions to the recover-
ability of `0\`1 minimization program in last decade. Most of the efforts focused
on finding well-defined compressed matrix satisfying null space property (NSP) or
restricted isometry property (RIP). Then, the complete information can be recon-
structed by `0\`1 minimization program from the compressed measurements. From
mathematical aspect, the decoding process is to solve an under-determined set of
equations which does generally not have unique solutions. However, if the required
solution is sparse, it can be recovered completely via `0 minimization. The condition
on sparsity for exact unique recovery is also well known. However, the `0 minimiza-
tion program is a NP-hard optimization problem. However, NSP or RIP pave way
for a convex relaxation via `1 minimization program. Interested readers are directed
to [45, 46, 47, 49] for more comprehensive treatment of compressed sensing, and
[48, 50] for several extension cases.

The basic motivation for using `1 minimization for attack-resilient estimation is
because the attack is possibly unbounded but is necessarily sparse. Consider the
measurement model in (2), if a coding matrix F can be found that satisfies FH = 0,
then a new under-determined equation Fy = Fe is obtained. If the sparse attack vec-
tor is recovered, the resilient estimation goal is easily achieved. In this section, in-
stead of finding a coding matrix F directly, we would formulate the problem within
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the familiar framework of linear systems theory and prove results similarly to com-
pressed sensing literature.

4.1 Unconstrained `1 Observer

In this subsection, we discuss the uniqueness of resilient estimation solution in the
presence of measurement attacks, and introduce the concept of column space prop-
erty (CSP). Furthermore, the estimation error bound is given using CSP.

Consider the system model in (1) and the unconstrained `1 decoder in (3), a
formal notion of attack recovery is given as following:

Definition 7 (Resilient Recovery). k sensor attacks are correctable after T steps by
D : (Rm)T →Rn if for any x0 ∈Rn and any sequence of attack vectors e0,e1, · · · ,eT−1 ∈
Rm with supp(et)≤ k, we have D(y0, · · · ,yT−1) = x0.

The following theorem states the uniqueness of resilient estimation solution:

Theorem 4. Given attack support T = {Ti,Ti−1, · · · ,Ti−T+1} with |Ti| ≤ k. Con-
sider the noise-free version of the measurement model in (2). If, for any h ∈
range(H), it is true that

‖hS ‖1 ≤ ‖hS c‖1, ∀S ⊂ {1,2, · · · ,T m}, |S | ≤ T k (26)

then, for each attacked measurement yT ∈ RT m, there exists an unique state vector
x̂ ∈ Rn and T k-sparse attack vector ê which satisfy (2).

Proof. Let (z1,e1),(z2,e2) ∈ Rn×ΣT k such that

yT = Hz1 + e1 = Hz2 + e2,

then
H(z1− z2) = e2− e1.

Thus, the uniqueness condition holds iff

range(H)∩Σ2T k = {0}.

Now, given h ∈ range(H) which satisfies (26), it suffices to show that ‖h‖0 > 2T k.
Suppose, for the sake of contradiction, that ‖h‖0≤ 2T k. Choose S ∈{1,2, · · · ,T m},

|S |= T k to be the indices of the largest components of h in absolute value.
Then, it must be that

‖hS ‖0 > ‖hS
c‖0⇒‖hS ‖1 > ‖hS

c‖1,

which is a contradiction. Thus, (26) implies that ‖h‖0 > 2T k.

Consequently, a formal definition of column space property is given as follows.
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Definition 8 (Column space property (CSP)). A matrix H ∈ Rm×n has a column
space property of order s < m (denoted as H .CSP(s)) if there exists β ∈ (0,1)
such that, for every h ∈ range(H),

‖hS ‖1 ≤ β‖hS c‖1, ∀S ⊂ {1,2, · · · ,m}, |S | ≤ s. (27)

The above definition is similar to the well-known Null Space Property but defined
on the range space instead. For dynamic system (1), the unconstrained `1 observer
is defined as a moving-horizon unconstrained `1 minimization program:

Minimize
i

∑
j=i−T+1

‖y j−Cx j‖1

Subject to x j+1−Ax j = 0, j = i−T +1, · · · , i−1

(28)

An equivalent optimization program of (28) is given by

Minimize
x∈Rn

‖yT −Hx‖1 (29)

The following theorem gives the conditions for resilient recovery of the state
vector obtained by the above observer.

Theorem 5 (Resilient Recovery with CSP). Consider the measurement model in
(2), let T = {Ti,Ti−1, · · · ,Ti−T+1}, with |Ti| ≤ k, be the unknown sequence of the
attack support. If H .CSP(T k), the estimation error due to the decoder in (29) can
be upper bounded as:

‖x̂−x‖2 ≤
2(1+β )

σ(1−β )
ε, (30)

for some β ∈ (0,1), and σ is the smallest singular value of H.

Proof. Let x̂ be the optimal solution of (29), then its optimality yields

‖y−Hx̂‖1 ≤ ‖y−Hx‖1 = ‖e‖1

‖y−Hx+H(x− x̂)‖1 ≤ ‖e‖1

Let x̃ = x− x̂, and since 1-norm is decomposable for disjoint sets, then

‖e+Hx̃‖1 ≤ ‖e‖1

‖eT +HT x̃‖1 +‖eT c +HT c x̃‖1 ≤ ‖eT ‖1 +‖eT c‖1

‖eT ‖1−‖HT x̃‖1−‖eT c‖1 +‖HT c x̃‖1 ≤ ‖eT ‖1 +‖eT c‖1

And let h = Hx̃, it follows

‖hT c‖1 ≤ ‖hT ‖1 +2ε. (31)

Since H .CSP(T k), there exist β ∈ (0,1) such that ‖hT ‖1 ≤ β‖hT c‖1. Thus
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‖hT ‖1 ≤
2β

1−β
ε

Then,

‖h‖2 ≤ ‖hT ‖1 +‖hT c‖1 ≤ 2‖hT ‖1 +2ε ≤ 2(1+β )

1−β
ε

Finally, combining with σ‖x̃‖2 ≤ ‖h‖2 yields the error bound in (30).

Notice that the CSP condition with β ∈ (0,1) is a violation of the condition stated
in (7), which is a guarantee of successful FDIA. And the CSP condition is relevant
to the sparsity of attack vector. As shown in literature [17], the number of attacks is
one of the most important factor deciding if successful resilient estimation would be
achieved. With increasing power of FDIA, it is more likely that the CSP condition
would be violated. This is one of the motivations for finding an improved resilient
estimation method in worst environment.

4.2 Resilient Pruning Observer

In this subsection, we incorporate prior information into the resilient observer de-
sign. First, a support prior T̂ is generated by the localization algorithm in Algo-
rithm 1. Then the pruning algorithm in Algorithm 2 is used to improve the precision
of the support prior. Finally, a weighted `1 observer scheme is proposed to utilize
the pruned support prior T̂η . This process is summarized in Fig. 4.

Fig. 4 Schematic depiction of resilient observer design with prior pruning

Consider a time horizon T and a set of attack support prior obtained by Algo-
rithm 1: T̂ = {T̂i,T̂i−1, · · · ,T̂i−T+1}. The following weighted `1 observer is con-
sidered:

Minimize
i

∑
j=i−T+1

‖y j−Cx j‖1,w(T̂ j ,ω)

Subject to x j+1−Ax j = 0, j = i−T +1, · · · , i−1,

(32)

where, for ω ∈ (0, 1), the weight vector w(T̂ j,ω) ∈ Rm is defined element-wise as
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w(T̂ j,ω)l =

{
ω if l ∈ T̂ j
1 otherwise

(33)

The optimization problem in (32) is equivalent to

Minimize
z∈Rn

‖yT −Hz‖1,w(T̂ ,ω), (34)

where, w(T̂ ,ω) =

 w(T̂i,ω)
...

w(T̂i−T+1,ω)

 ∈ RT m.

Theorem 6 (Resilient Recovery with support prior T̂ ). Consider the measure-
ment model in (2), let T = {Ti,Ti−1, · · · ,Ti−T+1}, with |Ti| ≤ k, be the un-
known support sequence of the attack vector such that ∑

i∈T c
|ei| < ε . Let T̂ =

{T̂i,T̂i−1, · · · ,T̂i−T+1} be a support prior estimate satisfying

|T̂ |= ρ|T | and |T ∩ T̂ |= α|T̂ |. (35)

If H .CSP(κT k), where κ = ρ +1−2αρ with ρ > 0,α ∈ (0, 1), then the estima-
tion error due to the decoder in (32) can be upper bounded as:

‖x̂−x‖2 ≤
2(1+β )

σ(1−β )
ε, (36)

for some β ∈ (0,1), where σ is the smallest singular value of H.

Proof. Let x̂ be the optimal solution of (34), and define x̃ = x− x̂, h = Hx̃. Similar
to the proof of Theorem 5, the optimality of x̂ yields

‖e+h‖1,w(T̂ ,ω) ≤ ‖e‖1,w(T̂ ,ω). (37)

By the definition of weighted 1-norm, it follows that

ω‖eT̂ +hT̂ ‖1 +‖eT̂ c +hT̂ c‖1 ≤ ω‖eT̂ ‖1 +‖eT̂ c‖1,

then

ω‖eT̂ ∩T +hT̂ ∩T ‖1 +ω‖eT̂ ∩T c +hT̂ ∩T c‖1 +‖eT̂ c∩T +hT̂ c∩T ‖1

+‖eT̂ c∩T c +hc
T̂ c∩T ‖1 ≤ ω‖eT̂ ∩T ‖1 +‖eT̂ ∩T c‖1 +‖eT̂ c∩T ‖1 +‖eT̂ c∩T c‖1.

Using the reverse triangle inequality yields

ω‖hT̂ ∩T c‖1 +‖hT̂ c∩T c‖1 ≤ ‖hT̂ c∩T ‖1 +ω‖hT̂ ∩T ‖1 +2(‖eT̂ c∩T c‖1 +‖eT̂ ∩T c‖1)

Adding and subtracting ω‖hT̂ c∩T c‖1 on the left, and ω‖hT̂ c∩T ‖1, ω‖eT̂ c∩T c‖1
on the right yields:
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ω‖hT c‖1 +(1−ω)‖hT̂ c∩T c‖1 ≤ (1−ω)‖hT̂ c∩T ‖1 +ω‖hT ‖1

+2(ω‖eT c‖1 +(1−ω)‖eT̂ c∩T c‖1).

Again, adding and subtracting (1−ω)‖hT̂ ∩T c‖1 on the left and substituting ∑
i∈T c
|ei|<

ε yields:

‖hT c‖1 ≤ ω‖hT ‖1 +(1−ω)(‖hT̂ c∩T ‖1 +‖hT̂ ∩T c‖1)+2ε.

Let Tα , (T̂ c∩T )∪(T̂ ∩T c) = T̂ ∪T \T̂ ∩T . It follows that |Tα |= κ|T | ≤
κT k. Also, since T̂ c∩T and T̂ ∩T c are disjoint, the inequality above becomes

‖hT c‖1 ≤ ω‖hT ‖1 +(1−ω)‖hTα
‖1 +2ε. (38)

Since H .CSP(κT k), we have

‖hT ‖1 ≤ β‖hT c‖1 (39)
‖hTα

‖1 ≤ β‖hT c
α
‖1 (40)

And using (40) and property of 1-norm yields:

‖hTα
‖1 +‖hT c

α
‖1 = ‖h‖1

‖hTα
‖1 ≤

β

1+β
‖h‖1

(41)

Then, substituting (39) and (41) into (38) yields

(1−βω)‖hT c‖1 ≤
β (1−ω)

1+β
‖h‖1 +2ε (42)

Next,

‖h‖1 = ‖hT ‖1 +‖hT c‖1 ≤ (1+β )‖hT c‖1 ≤
β (1−ω)

1−βω
‖h‖1 +

2(1+β )

1−βω
ε

then

‖h‖2 ≤ ‖h‖1 ≤
2(1+β )

1−β
ε

Finally, combining with σ‖x̃‖2 ≤ ‖h‖2 yields the error bound in (36).

The estimation error bound in Theorem 6 is the same as the one in Theorem 5.
The only difference is that the upper bound of the number of attacks which can be
corrected by the underlying observer is governed by κ . If κ < 1, then the weighted `1
observer with prior (32) has better attack-resiliency compared to the unconstrained
`1 observer (28). Furthermore, the size of κ is actually the relative size of the dis-
agreement set Tα = T̂ ∪T \T̂ ∩T between T and T̂ . Specifically, the quantified
relationship between the precision of support prior PPV and the disagreement size
κ is given by:
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κ = ρ−1+
2(1−PPV)(T m−ρ|T |)

|T |
,

where, ρ is given in (35). It is seen that the precision of support prior has a negative
correlation to the disagreement size κ . Thus, it has a positive correlation to the
attack-resiliency of the underlying observer. Another way to see this is to observe
that the condition in Theorem 6 can be stated as |Ti| ≤ T k

κ
and H .CSP(T k), from

which it is clear that κ < 1 implies that more attacks can be accommodated by the
observer with prior. This is the main motivation for the pruning algorithm. Next, the
following corollary gives a better attack-resiliency of weighted `1 observer with the
pruned support T̂η .

Corollary 1 (Resilient Recovery with Pruned Prior T̂η ). Given a support prior
T̂ = {T̂i,T̂i−1, · · · ,T̂i−T+1} generated by the localization algorithm in Algo-
rithm 1. Let T̂η be the pruned support prior obtained from T̂ according to Algo-
rithm 2 with a parameter η ∈ (0,1). Let the precision of T̂η be denoted by PPVη .
If H .CSP(κ1T k), where

κ1 =
|T c|+ lη(1−2PPVη)

|T |
,

then the estimation error due to (32) with T̂η can be upper bounded as

‖x̂−x‖2 ≤
2(1+β )

σ(1−β )
ε, (43)

for some β ∈ (0,1), and σ is the smallest singular value of H.
Furthermore, with probability at least η , the smallest disagreement size is ob-

tained as

κ1 =
T m− lη
|T |

−1. (44)

Proof. (43) can be obtained by following the proof of Theorem 6 but using PPVη

instead. To obtain (44), observe that with probability at least η , PPVη = 1.

5 Simulation Results

In this section, three application examples are given in power grid, wheeled mo-
bile robot, and water distributed system respectively. These application examples
are used to demonstrate how (1) to implement the developed observer in previ-
ous sections and (2) the resulting pruning-based observers improves compares,
performance-wise, with some well-known results in the literature.
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5.1 Resilient Power Grid

Here, we implement the proposed pruning observer on a IEEE 14-bus system. The
simulation scenario is shown in Fig. 5. The bus system has nb = 14 buses and
ng = 5 generators. It is assumed that each bus in the network is equipped with IIoT
sensor devices which provide the corresponding active power injection and flow
measurements.

Fig. 5 Block diagram depiction of resilient power grid

A small signal model is constructed by linearizing the generator swing and power
flow equations around the operating point. The following linearizing assumptions
are made:

1. Voltage is tightly controlled at their nominal value;
2. Angular difference between each bus is small;
3. Conductance is negligible therefore the system is lossless.

By ordering the buses such that the generator nodes appear first, the admittance-

weighted Laplacian matrix can be expressed as L =

[
Lgg Llg
Lgl Lll

]
∈ RN×N , where N =

ng + nb. Thus, the dynamical linearized swing equations and algebraic DC power
flow equations are given by:I 0 0

0 M 0
0 0 0

 ẋ =−

 0 −I 0
Lgg Dg Llg
Lgl 0 Lll

x+

0 0
I 0
0 I

u, (45)

where, x = [δ> ω> θ>]> ∈ R2ng+nb is the state vector containing generator ro-
tor angle δ ∈ Rnb , generator frequency ω ∈ Rng , and voltage bus angles θ ∈ Rnb .



26 Yu Zheng, Olugbenga Moses Anubi

u = [P>g P>d ]> ∈ Rng+nb is the input vector consisting of mechanical input power
from each generator Pg ∈ Rng and active power demand at each bus Pd ∈ Rnb , M
is a diagonal matrix of inertial constants for each generator, and Dg is a diagonal
matrix of damping coefficients. A PI regulator is included to regulate the generator
frequency in order to control the Pg. The system in (45) is then simplified as follows:[

δ̇

ω̇

]
=

[
0 I

−M−1(Lgg−LglL−1
ll Llg) −M−1Dg

][
δ

ω

]
+

[
0 0

M−1 −M−1LglL−1
ll

]
u,[

ω

Pnet

]
=

[
0 I

−PnodeL−1
ll Llg 0

][
δ

ω

]
+

[
0 0

PnodeL−1
ll 0

]
u,

θ =−Lll−1(Llgδ −Pd),
(46)

where Pnode is a function of the system incidence and susceptance matrices obtained
by linearizing the active power injections at the buses [54], and Pnet is the net power
injected at each bus. As shown in Fig. 5, the FDIA designed using (5) and (6) is
injected into system through the sensor channels. The bad data detection residual is
then calculated after the FDIA is injected, as shown in Fig. 6. The figure indicates
the designed FDIA can bypass bad data detector.

Fig. 6 Bad data detection result (the residual threshold is set as 0.05, 60% of measurement nodes
are attacked)

The prior model is a set of trained Gaussian process regression models mapping
from the real load data of New York (NY) state provided by the NY Independent
System Operator (NYISO) to IEEE 14-bus model measurements. Five-minute load
data of NYISO for 3 months (between January and March) in 2017 and 2018 are
used. As shown in Fig. 7, the IEEE 14-bus model discussed above is mapped onto
the NYISO transmission grid as follows: A→ 2, B→ 3, C→ 4, D→ 5, E → 6,
F → 9, G→ 10, H → 11, I → 12, J → 13, K → 14. Then, the market variables
downloaded from the respective nodes of NYISO transmission grid are collected
into the auxiliary vector variable z = [zlbmp zmcl zmcc], where zlbmp is the locational
bus marginal prices ($/MWh), zmcl is the marginal cost loses ($/MWh), and zmcc is
the marginal cost congestion ($/MWh). Using the load data downloaded at NY load
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Fig. 7 Mapping from NY load zones to IEEE 14-bus system (Left is IEEE 14-bus system test case
[52], right is NYISO control area load zone map [53])

zones for the same time period and interval as output, GPR models were trained to
map the auxiliary vector z to each corresponding bus measurements y j containing
active power and reactive power of load buses. As shown in (13), the trained GPR
models are executed to give the mean µ(z) and the covariance Σ(z) of prior model
for each of measurements. The prediction performance of those GPR models, mea-
sured by the mean relative absolute errors (MRAE), are shown in Fig. 8. Finally, the

Fig. 8 GPRs’ prediction error metrics for all measurement nodes (The mean relative absolute error
is used to evaluate the prediction performance)

localization algorithm in Algorithm 1 is implemented on the system model in (46).
The precision of the generated support prior calculated for each time step is shown
in Fig. 9. The mean of precision is 0.655, which indicates the localization algorithm
at least works better than random flip of fair coin.

Furthermore, the developed resilient observer with support prior pruning is com-
pared with some well-known resilient observers in literature. Luenberger observer
(LO) is also included to serve as a reference and to show the effectiveness of the
designed FDIA. The unconstrained `1 observer (UL1O) (28), event-triggered Lu-
enberger observer (ETLO) [18], and multi-model observer (MMO) [25] are all re-
silient observers included in the comparison. MMO is a `1 observer with multiple
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Fig. 9 The precision of support prior generated by the localization algorithm in Algorithm 1 for
the power grid (The mean of precision is 0.655)

Fig. 10 A comparison result of estimation error of bus angles by 5 observers on IEEE 14-bus
system (46). (LO: Luenberger observer, UL1O: unconstrained `1 observer, ETLO: event-triggered
Luenberger observer, MMO: multi-model observer, RPO: resilient pruning observer)

constraints including system updating law and the measurement prior in (13). The
core optimization problem solved for the MMO is:

Minimize
k

∑
i=k−T+1

‖yi−Cxi‖1

Subject to xi+1−Axi−Bui = 0 j = i−T +1, · · · , i−1

‖Cxk−µ (zk)‖2
Σ−1(z) ≤ χ

2
m(τ)

(47)

where, χ2
m(τ) is the quantile function for probability τ of the chi-squared distribution

with m degrees of freedom, and τ is the a pre-defined confidence threshold.
ETLO uses event-triggered projected gradient descent technique to achieve fast

and reliable solution to the batch optimization problem
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Minimize: ‖Yt − [H I]zt‖2
2

Subject to: zt ∈ Rn×ΣT k,
(48)

where the decision variable zt is an augmented states containing desired initial states
and all injected measurement error in T time horizon, Yt = [y1(t−T +1)> y1(t−
T +2)> · · · y1(t)> · · · · · · ym(t−T +1)> ym(t−T +2)> · · · ym(t)>]> ∈RT m

is the collection of measurements in T time horizon. A recursive solution to (48) is
then implemented as a Luenberger-like update

ẑ(m+1)
t = ẑ(m)

t +2[H I]>(Yt − [H I]ẑ(m)
t ), (49)

alternated with a projection

ẑΠ = Π(ẑ), (50)

where Π : Rn×RT m 7→ Rn×ΣT k is the associated projection operator.
Fig. 10 shows the comparison of the bus angles estimation errors for the different

observers. It is seen that the RPO has the least error of all 5 observers. The Luen-
berger observer is completely unstable as a result of the FDIA, which was designed
by compromising 19 sensors measurements. For the MMO, the value of τ = 0.1 was
used for the confidence value. For the ETLO, the value of v = −0.01 was used for
the decreasing level of V .

5.2 Resilient Water Distribution System

In this subsection, we introduce another application example on a water tank cou-
pling control system, shown in Fig. 11. The tank coupling system in [55] was ex-
tended to a 11-tanks system which contains 10 operating water tank and a storage
tank. The goal is to regulate all operating tanks’ water levels around desired values.
The magnetic valves v at the entrance pipelines of operating tanks are controlled to
adjust the tank water levels. The magnetic valve at the entrance of the storage tank
is fixed at a constant opening value. It is assumed that there are water level measure-
ment sensors and pressure senors in the pipelines.The pressure sensors can measure
the difference of water level between adjoin tanks on each line. Thus, there are 19
measurements total. The water level adjustment process can be approximated by the
LTI model:

ḣ = Ah+Bv
y =Ch

(51)

where h,v ∈ R10, y ∈ R19. The system dynamics is given by



30 Yu Zheng, Olugbenga Moses Anubi

Fig. 11 A water distribution tank coupling control system under false data injection attacks (black
solid lines are water pipelines, blue dotted lines are wireless data transmission lines for sensors
data and control commands, orange dotted lines are attack injection paths)

A =



−0.5815 0 0 0 0 0 0 0 0 0
0.1870 −0.5906 0 0 0 0 0 0 0 0

0 0.1870 −0.5127 0 0 0 0 0 0 0
0 0 0.1870 −0.5913 0 0 0 0 0 0
0 0 0 0.1870 −0.5632 0 0 0 0 0
0 0 0 0 0.1870 −0.5098 0 0 0 0
0 0 0 0 0 0.1870 −0.5278 0 0 0
0 0 0 0 0 0 0.1870 −0.5547 0 0
0 0 0 0 0 0 0 0.1870 −0.5958 0
0 0 0 0 0 0 0 0 0.1870 −0.5965



B =



0.8315 −0.8450 0 0 0 0 0 0 0 0
0 0.9941 −0.8450 0 0 0 0 0 0 0
0 0 0.9914 −0.8450 0 0 0 0 0 0
0 0 0 0.8971 −0.8450 0 0 0 0 0
0 0 0 0 0.9610 −0.8450 0 0 0 0
0 0 0 0 0 0.8284 −0.8450 0 0 0
0 0 0 0 0 0 0.8844 −0.8450 0 0
0 0 0 0 0 0 0 0.9831 −0.8450 0
0 0 0 0 0 0 0 0 0.9584 −0.8450
0 0 0 0 0 0 0 0 0 0.9919
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C =



I10

1 −1 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 1 −1


The model in (51) was discretized using Euler discretization scheme with sam-

pling time 0.01s. A discrete LQR controller is designed using Q= 103×diag{2,1,1,2,1,1,2,1,1,2}
and R = 0.2× I10 to obtain the feedback control gain K to regulate the water levels
at hd = 0.01∗110, The control law is given by

v =−K(h−hd)−B−1Ahd +B−1hd .

The attack percentage is set as PA = 0.6, and by using the designed FDIA (6), it can
bypass the bad data detection threshold. Due to lack of actual auxiliary data for this
case, a sample support prior is created by generating uniformly distributed random
numbers in the interval [0, 1] for each measurement node. These numbers repre-
sent the localization confidence values pi’s used in Algorithm 2. The generated prior
information represents a localization algorithm whose performance is comparable
to random flip of a fair coin. The reason for this is to show how the observers per-
form using a relatively poor localization algorithm. The precision of the generated
support prior is shown in Fig. 12, the mean of precision is 0.5588. For a more real-
istic situation, possible candidate auxiliary variables include atmospheric data like
temperature, humidity, atmospheric pressure, or any other values that can affect the
flow of water in a long pipe. Market data and time of day are also great candidates
for auxiliary variables.

Then the resilient estimation schemes descried in last subsection are also imple-
mented for this system. The comparison of the resulting estimation errors is pre-
sented in Table 1, in which relative mean square error and maximum absolute error
are given. Again, as seen in the table, the RPO outperforms the other observers in
terms of the given error metrics.

5.3 Resilient Wheeled Mobile Robot

For this example, a nonlinear observer scheme based on prior information is given
for the resilient motion control of wheeled mobile robot. Non-holonomic wheeled
mobile robot is considered with IIoT sensors, its dynamical and kinematic model
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Fig. 12 The precision of support prior generated by the localization algorithm in Algorithm 1 for
water tank coupling system (The mean of precision is 0.5588)

RMS Metric Max. Ans. Metric
LO UL1O MMO RPO LO UL1O MMO RPO

e1 1.4434 2.5657e-6 2.0794e-6 3.5704e-10 21.8421 4.6746e-5 4.6655e-5 5.7127e-9
e2 1.5088 5.8117e-6 2.1444e-8 4.3079e-10 23.0772 1.5826e-4 5.1996e-7 5.7700e-9
e3 0.8018 4.1172e-8 2.1381e-10 4.3901e-10 13.9374 1.1886e-6 3.4310e-9 9.6873e-9
e4 0.7350 4.5476e-6 4.5476e-6 3.2479e-10 14.4943 1.4388e-4 1.4388e-4 4.4373e-9
e5 0.5645 2.2444e-5 1.7216e-5 3.5302e-10 9.8116 4.7845e-4 3.7122e-4 4.8049e-9
e6 1.0332 3.3578e-5 1.7473e-5 4.1156e-10 15.5191 5.5419e-4 3.7748e-4 8.1021e-9
e7 1.1802 2.2776e-5 1.6834e-5 3.8149e-10 17.1720 4.1583e-4 3.7724e-4 5.5387e-9
e8 1.2172 3.8198e-5 2.2591e-6 1.1470e-6 20.5512 0.0010 6.1343e-5 3.6289e-5
e9 0.9802 2.2720e-5 2.2118e-5 2.0543e-6 18.1152 3.4706e-4 3.4706e-4 6.2776e-5
e10 2.6151 1.0291e-4 2.0641e-6 2.3344e-7 28.5826 0.0030 6.1424e-5 7.3509e-6

Table 1 Error metric values for four resilient observers on water tank coupling system (RMS
Metric: relative mean square error, Max. Ans. Metric: maximum absolute error)

can be described as [56]

q̇ = M−1(−Dq+Bτ)+w , g(x,u)+w θ̇

· · ·
ż

=

0 1
· · ·

C(θ)

q , C̄(θ)q,
(52)

where, q = [v ω]> is the generalized body velocities vector, u , τ = [τR τL]
> is

a vector of the wheels torques, and z = [x y]> is the task-space position vector,
x = [θ v ω]> is defined as a state vector, w ∼ N (0,R) is the process noise in
dynamics. The kinematic and dynamical parameters are given by:

M =

[
m 0
0 md2 + J

]
, D =

[
0 −mdω

mdω 0

]
B =

1
r

[
1 1
L −L

]
, C(θ) =

[
cos(θ) −d sin(θ)
sin(θ) d cos(θ)

]
.
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The corresponding measurements system is given by

y =


1 0
0 1

1/4r L/4r
1/4r −L/4r

cos(θ) −d sin(θ)
sin(θ) d cos(θ)

 ·q+v , f (x)+v+ e, (53)

where v denotes measurement noises, e denotes the attack vector.
Given a desired 2D ”Figure-8” path described by the continuous function:

zd =

[
xd(t)
yd(t)

]
=

 acos(t)
1+sin2(t)

asin(t)cos(t)
1+sin2(t)

 ,
θd(t) = arctan

(
yd(t)
xd(t)

)
,

a stable path-tracking controller was given in [16] as

τ = B−1(Mu+Dq), (54)

where,

u =−kq(q−qd)+ q̇d−C̄(θ)>ẽ

with
qd =C−1(θ)(żd− keez),

q̇d =−ke(Ċ−1(θ)ez +q)+C−1(θ)[z̈d +(ke +C(θ)Ċ−1(θ))żd ].

and kq, ke are positive scalar control gains.
Next task is to design a nonlinear observer to recover the real state x under the

compromised measurements y, shown in Fig. 13. According to Theorem 1, the pre-
cision of T̂ c

η can achieve 100% with a probability lower bound. Thus, Unscented
Kalman Filter (UKF) can be used on the safe subset of measurements denoted
by T̂ c

η . The control system with resilient Kalman filter is shown schematically in
Fig. 13. Fig. 14 and Fig. 15 show comparisons of the tracking performances be-
tween UKF, UKF with the prior , and UKF with prior and pruning. It is well-known
in literature that KF cannot recover exact states in the presence of FDIA. Fig. 14
and Fig. 15 confirms this fact. Specifically, it is seen that the path-tracking task and
state estimation totally fail with only UKF. By adding a prior information obtained
by the localization algorithm whose mean of precision is around 0.6, the motion
control performance is improved but has big oscillatory due to the imperfect preci-
sion. However, with the developed pruning algorithm, the robot was able to track
the reference path very closely and smoothly.
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Fig. 13 Block diagram depiction the resilient motion control of wheeled mobile robot

Fig. 14 Path tracking performance (UKF: unscented Kalman filter, UKF with prior: unscented
Kalman filter with the prior generated by localization algorithm in Algorithm 1, UKF with prior
pruning: unscented Kalman filter with pruned prior generated by Algorithm 2)

6 Conclusion

In this chapter, we talk through the resilient observer design with prior pruning.
Firstly, we prove that a good support prior (better than random flip of fair coin)
improve the attack-resiliency boundary (50%) of resilient observers admitted by lit-
erature. Secondly, the pruning algorithm is a method to improve the precision of
support prior without training effort, which make prior information more useful in
control scenario. Finally, the proposed pruning observer scheme showed its supe-
rior in worse attacking situation compared to other resilient observers in literature.
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Fig. 15 Estimations of robot’s forward velocity v and angular velocity ω by three observers (Black
line is the nominal state estimation, blue line is the estimation by those three observers in presence
of FDIA)

Moreover, another minor contributions of this chapter include a formal definition of
successful FDIA and optimization-based FDIA design.
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