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Robust Resilient Signal Reconstruction under Adversarial Attacks
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We consider the problem of signal reconstruction for a system under sparse unbounded signal corruption by an adversarial agent.
The reconstruction problem follows the standard error coding problem that has been studied extensively in literature, with the
added consideration of support estimation of the attack vector. The problem is formulated as a constrained optimization problem –
merging exciting developments in the field of machine learning and estimation theory. Sufficient conditions for the reconstructability
and the associated reconstruction error bounds were obtained for both exact and inexact support estimation of the attack vector.
Special cases of data-driven model and linear dynamical systems were also considered.

Index Terms—Compressive Sensing, Signal Reconstruction, Cyber-physical Systems, Secure Estimation, Resilient.

I. INTRODUCTION

MAJORITY of Industrial systems and critical infras-

tructures are Cyber-physical Systems (CPS), in that

they consist of an interplay between physical components

(sensors, controllers and actuators) and digital components

(computational algorithms, software systems, human-machine

interfaces) via communication networks. This opens up a

portal that makes them prime targets of cyber malicious

activities. The resilient signal reconstruction is a filtering

problem for removing undesirable effects created by malicious

intent as in adversarial attacks or other similar unbounded

phenomenon on some of the system’s monitoring nodes. For

physical systems, if signal reconstruction is performed jointly

on all the affected signals, then it can improve resiliency

of critical infrastructure to cyber-activities and fault-induced

anomalies to allow continued, safe operation [1].

There are numerous work in literature on the secure esti-

mation for CPS [2]–[11]. However, we focus only on the ones

which are optimization based - since that is the approach taken

in this work. Moreover, due to sparsity assumption on the set

of attacked nodes, majority of these works are based on the

classical error correction problem [12]. Given a coding matrix

F ∈ R
n×m with far fewer rows than columns (n ≪ m) and

a vector of observed/measured quantities y ∈ R
m, the coding

problem is to recover a sparse vector e, ‖e‖l0 < m for which

y = Fe. This is cast as the compressive sensing problem:

Minimize:
e

‖e‖l0 Subject to: y = Fe. (1)

Hayden et. al [13] obtained a sufficient condition that if

all subsets of 2q columns of F are full rank, then any error

‖e‖l0 ≤ q can be reconstructed uniquely by the solution of

the optimization problem in (1).

Although in some cases [6] the optimization problem in

(1) is solved as is, in most cases, it does not lend itself to

*Research supported by US DOEs (Department of Energy) Cyber Security
for Energy Delivery Systems (CEDS) R&D Program and GE Global Research

Corresponding author: O. Anubi (email: anubimoses@gmail.com).
The work presented in this paper was done while all authors were at the

GE Global Research

a solution in polynomial time due to its nonconvexity. As a

result, it is often replaced with its convex neighbor:

Minimize:
e

‖e‖l1 Subject to: y = Fe. (2)

The two programs, however, have been shown to be equiva-

lent under the condition that the Restricted Isometric Property

(RIP) holds [14]–[17]. Let F T ,
((
F⊤
)
T

)⊤
∈ R

n×|T |, T ,

supp(e) ⊂ {1, . . . ,m} be the submatrix obtained by extracting

the columns of F corresponding to the indices in T . Then

the S-restricted isometry constant δS of F is defined as the

smallest quantity such that

(1− δS) ‖v‖
2
≤
∥∥F TSv

∥∥2 ≤ (1 + δS) ‖v‖
2

for all subsets TS with |TS | ≤ S and vector v ∈ R
|TS|.

This property essentially requires that every set of columns

with cardinality less than S approximately behaves like an

orthonormal system. Moreover, it was shown that if

δS + δ2S + δ3S < 1,

then solving the optimization problem in (2) recovers any

sparse signal e for which |T | ≤ S.

Now, suppose there is exists an oracle which estimates the

support T in advance, then the sparse vector e can estimated

to an accuracy of ε
1−δ|T |

by the least square estimator:

ê = argmin
e

{
‖yT − FT e‖

2
}
,

where ε is the model-measurement error. Of course, if the

measurement is error-free, then the estimation is exact.

The goal of this work is to investigate least-square-type

estimator when such oracle is available subject to both

oracle and measurement uncertainties. Such oracles are

termed localization oracles for the purpose of this work.

The motivation for this approach stemmed from the authors’

experience from working on the DOE funded program

Cyber Attack Detection and Accommodation for Energy Delivery systems

where a team of Machine Learning experts have developed

such algorithm using supporting data from other sources. The

question then arises “What is the best simplest thing to do

to reconstruct true signals given localization information with

http://arxiv.org/abs/1807.08004v1
https://energy.gov/sites/prod/files/2017/06/f34/GEGR_ADA_FactSheet_0.pdf
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uncertainty?”. This work is an attempt to provide an answer

partially to that question.

The rest of the paper is organized as follows: In Section III,

the measurement model considered is presented with the

basic reconstruction problem. In Section IV, some achievable

bounds are proved for the reconstruction problem where the

exact support of the attack vector is assumed to be provided

apriori by some support estimator. In Section V, the exact

support knowledge assumption is replaced by an uncertainty

model derived from the ROC statistic of the support estimator

and new results are obtained based on the statistical informa-

tion. Special cases of data-driven model and linear dynamical

systems were considered in Section VI. Finally, some future

directions are highlighted in Section VII

II. NOTATION

The following notions and conventions are employed

throughout the paper: R,Rn,Rn×m denote the space of real

numbers, real vectors of length n and real matrices of n

rows and m columns respectively. R+ denotes positive real

numbers. X⊤ denotes the transpose of the quantity X . By

Q � 0, it is meant that Q is a positive semi-definite symmetric

matrix, i.e x⊤Qx ≥ 0 ∀x 6= 0 and Q ≻ 0 denotes positive

definiteness which is defined with strict > instead. Given

Q ≻ 0, the Q-weighted norm is defined as ‖x‖Q , x⊤Qx.

Normal-face lower-case letters (x ∈ R) are used to represent

real scalars, bold-face lower-case letter (x ∈ R
n) represents

vectors, while normal-face upper case (X ∈ R
n×m) represents

matrices. Let T ⊆ {1, . . . , n} then, for a matrix X ∈ R
n×m,

XT ∈ R
|T |×m is the submatrix obtained by extracting the

rows of X corresponding to the indices in T . For a vector

x, xi denotes its ith element. The symbol ◦ denotes element-

wise multiplication of two vectors and is defined as z = x◦y,

where zi = xiyi. supp(x) is the support of the vector x

given by the set supp(x) = {i|xi 6= 0}. argsort ↓ (x)
denotes a function that returns the sorted indices of vector

x in descending order ( i.e argsort ↓ (x) = {i|xi ≥ xi+1}) .

Sc denotes the complement of a set and the universal set on

which it is defined will be clear from the context.

III. PRELIMINARIES

Consider the linear model:

y = Cx+ e+ v, (3)

where y, e,v ∈ R
m are vectors of observation/measurements,

attack/corruption due to an adversarial agent, and error term

due to measurement noise/model uncertainty respectively. The

matrix C ∈ R
m×n a mapping from some internal state (⊆ R

n)

to the output space (⊆ R
m). The following assumptions are

made with respect to the model above:

Assumptions

• Redundancy: Measurements contain redundant informa-

tion in that m > n

• Bounded Noise: There exists a known ε > 0 such that

‖v‖ ≤ ε

• Sparse Corruption: |supp(e)| ≪ m

• Attack-Noise Orthogonality: WLOG, e⊤v = 0

Consequently, the reconstruction problem is given by:

Minimize: ‖e‖l0 + ‖v‖l2
Subject to:

y = Cx+ e+ v

e⊤v = 0

(4)

which is, in general, a very challenging problem to solve

due to the index minimization objective and the degeneracy

introduced by the complementarity constraint e⊤v = 0.

However, if there exists a localization oracle that provides the

support T = supp(e) apriori, then the reconstruction problem

reduces to the unconstrained problem:

Minimize: ‖yT c − CT cx‖l2 . (5)

Of course, there are obvious conditions under which the

solution to the above optimization problem provides no guar-

antee of reconstructing the actual signal. In what follows, the

reconstruction error bounds are studied in more details under

different conditions.

IV. RECONSTRUCTION WITH EXACT SUPPORT

KNOWLEDGE

In this section, we examine some bounds on the reconstruc-

tion error when the attack support is known exactly. Although,

the exact knowledge assumption is not pragmatic, it does give

us a lower bound and a benchmark for the cases where the

support is not known exactly. The following theorem examines

the performance of a least-square reconstruction from partial

information.

Theorem 1 (Least Square Reconstruction). Given the linear

model

y = Cx+ ν, (6)

where y ∈ R
m is a vector of measurements, x ∈ R

n, n ≤ m

is a vector of internal states (or features), C ∈ R
m×n, and ν

is the model error with the associated error bound ‖ν‖ ≤ ε

for a known constant ε > 0.

Consider any partial measurement yT c ∈ R
m1 ,m1 < n

satisfying

yT c = CT cx∗ + νT c , (7)

where νT c is the associated model error and the vector

x∗ ∈ R
n is the unknown actual internal state associated with

the complete measurement set as in (6).

The least-square estimator;

x̂ = argmin

{
1

2
‖yT c − CT cx‖

2

}
, (8)

of x∗, satisfies the error bound

‖x̂− x∗‖ ≤
2

σ
ε, (9)

where σ is the smallest singular value of CT c .
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Proof. By the optimality of x̂, it follows that

‖yT c − CT c x̂‖2 ≤ ‖yT c − CT cx∗‖2 . (10)

After using (7), the above inequality can be simplified and

expanded as follows:

‖CT cx∗ − CT c x̂+ νT c‖
2
≤ ‖νT c‖

2

⇒‖CT c x̃‖
2
≤ 2ν⊤

T c (CT c x̃) , (11)

where x̃ = x̂− x∗. After using Young’s Inequality, for some

δ > 1 the above inequality yields1,

‖CT c x̃‖
2
≤ δ ‖νT c‖

2
+

1

δ
‖CT c x̃‖

2
,

⇒

(
1−

1

δ

)
‖CT c x̃‖

2
≤ δ ‖νT c‖

2

⇒‖CT c x̃‖2 ≤ 4 ‖νT c‖2 ≤
δ2

δ − 1
‖νT c‖2 . (12)

From which we conclude that

‖x̃‖ ≤
2

σ
‖ν‖ ≤

2

σ
ε (13)

Remark 1 (Rank-deficiency and RIP). Necessarily |T c| >=
n, otherwise the reconstruction error ‖x̂− x∗‖ is unbounded.

Consequently, one can conclude that: ‖x̂− x∗‖ ≤ 2
1−δn

ε,

where δn is the n-restricted isometry constant of C⊤.

Although it was shown in [12] that random matrices satisfy

the RIP condition with overwhelming probability, certifying

such property is still an NP-hard problem [18]. In order to

guarantee bounded reconstruction error for the cases where

there are potential loss of row-rank after selection due to

the localization oracle, we investigate the use of a special

constraint in the reconstruction optimization problem.

Corollary 1 (Constrained Least Square Reconstruction). Let

X ⊂ R
n be a set characterized by ‖x1 − x2‖ ≤ δ for all

x1,x2 ∈ X and some δ > 0. Consider the constrained least-

square estimator:

x̂ = argmin
x∈X

{
1

2
‖yT c − CT cx‖

2

}
. (14)

If x∗ ∈ X , then the reconstruction error can be upper bounded

as:

‖x̂− x∗‖ ≤ 2min

{
δ

2
,

ε

1− δn

}
. (15)

Proof. Using the optimality of x̂ and following similar ar-

gument as in the proof of Theorem 1, it is shown that

‖x− x∗‖ ≤ 2 ε
1−δn

. Next, using the feasibility of both x

and x∗, it follows that ‖x− x∗‖ ≤ δ. Thus, ‖x̂− x∗‖ ≤

min
{
δ, 2 ε

1−δn

}
.

Remark 2. Although Corollary 1 provides a guaranteed

bound on the reconstruction error, it introduces another

challenge of finding the set X that contains the unknown

vector x∗. Fortunately, there is a host of supervised and

1The same argument can be made for 0 < δ < 1 as well by using the

Young’s Inequality 2ν⊤
T c (CT c x̃) ≤ 1

δ
‖νT c‖2 + δ ‖CT c x̃‖2 instead.

unsupervised machine learning models and algorithms that

can be used to find such set from historical data, together

with some exogenous supporting measurement. In such cases,

the bound is guaranteed with a probability depending on

the ROC statistics of the underlying machine learning model.

Interested readers are directed to the reference [1] where the

authors used supervised learning with support vector machines

and generated a local approximation for X via a quadratic

approximation of the boundary score function.

V. RECONSTRUCTION WITH INEXACT SUPPORT

KNOWLEDGE

Even though, the constrained least square reconstruction

described in the previous section provides guaranteed bound

on the reconstruction error, it is impractical due to the ex-

act knowledge assumption on the support estimation. Exact

support knowledge alludes to a perfect localization oracle

which is not possible, or extremely challenging at best, from

a practical standpoint. Thus, it is imperative to understand

the effect of the imperfection of the localization oracle on

the reconstruction error bound. The goal of this section is to

re-examine the constrained least square reconstruction with

uncertain localization information.

For the unknown support T = supp(e), let the vector q be

an indicator of T c and defined element-wise as:

qi =

{
0 if i ∈ T
1 otherwise

(16)

Suppose the localization oracle gives an estimated support T̂ ,

with q̂ similarly defined, the following uncertainty model is

used:

qi = ǫiq̂i + (1 − ǫi)(1 − q̂i) (17)

where ǫi is a Bernoulli random variable with mean pi whose

estimate is given by the true positive rate from the localization

ROC statistic. Each ǫi ∼ B(1,pi) captures the agreement

between the estimated and actual support as

ǫi =

{
1 ⇒ q̂i = qi

0 ⇒ q̂i = 1− qi
.

Consequently, the estimation error is characterized by

q̃i , qi − q̂i = (2q̂i − 1)(ǫi − 1). (18)

Clearly,
∑m

i=1 ǫi = m− |supp(q̃)| and is poisson-binomially

distributed. Let r ∈ R
m+1 be a vector whose elements

correspond to the probability mass function of
∑m

i=1 ǫi, i.e,

Pr

(
m∑

i=1

ǫi = k − 1

)
= rk, k = 1, . . .m+ 1,

then [19]

r = α

[
−s1
1

]
∗

[
−s2
1

]
∗ . . . ∗

[
−sm
1

]
, (19)

where

α =
m∏

i=1

pi, si = −
1− pi

pi

(20)
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and the symbol ∗ denotes the convolution operator for vectors.

Next, we seek the maximum integer lη ∈ {0, . . . ,m} for

which the oracle will correctly localize at least lη nodes with

a probability of at least η. Explicitly, lη is given by:

lη = max

{
k

∣∣∣∣∣Pr

(
m∑

i=1

ǫi ≥ k

)
≥ η

}
(21)

= max

{
k

∣∣∣∣∣1−
k+1∑

i=1

ri ≥ η

}

= max

{
k

∣∣∣∣∣

k+1∑

i=1

ri ≤ 1− η

}
, (22)

where η ∈ (0, 1] is a reliability level and is set apriori.

Theorem 2. Consider the linear measurement model given in

(3). Suppose there exists a localization oracle which gives an

estimate, T̂ , of supp(e) with uncertainty described by (17).

Given a reliability level η ∈ (0, 1] with corresponding integer

lη given by (22), let T̂η be a new support with the indicator q̂η

(of T̂ c
η ) obtained by randomly matching lη elements of q̂ while

setting the remaining elements to 0. If lη−|supp(e)| ≥ n then,

with a probability of at least η, the least-square estimator;

x̂η = argmin
x∈X

{
1

2

∥∥∥yT̂ c
η
− CT̂ c

η
x

∥∥∥
2
}
, (23)

satisfies the error bound

‖x̂η − x∗‖ ≤ 2min

{
δ

2
,

ε

1− δn

}
, (24)

where δn is the n-restricted isometry constant of C⊤ and x∗ ∈
R

n is the unknown true internal state.

Proof. To avoid repetition, we state upfront that all claims

made in this proof holds with a probability of at least η.

From the definition of lη in (21), it follows that T̂ c
η ⊆

{supp(e)}c, which implies that

∥∥∥yT̂ c
η
− CT̂ c

η
x∗
∥∥∥ ≤ ε. Us-

ing the optimality of the estimator and following the same

procedure as in the proof of Theorem 1 yields

‖x̂η − x∗‖ ≤ 2min

{
δ

2
,
ε

ση

}
,

where ση is the smallest singular value of CT̂ c
η

. Next, since

ˆ|Tη| ≤ ˆ|T | and at least lη nodes are correctly localized by T̂ ,

the following hold:

lη −
∣∣∣T̂ c

η

∣∣∣ = lη −
(
m−

∣∣∣T̂η
∣∣∣
)

≤ lη −
(
m−

∣∣∣T̂
∣∣∣
)

= lη −
∣∣∣T̂ c
∣∣∣

≤ supp (e) .

Using lη − |supp(e)| ≥ n, it follows that:

lη −
∣∣∣T̂ c

η

∣∣∣ ≤ lη − n,

which implies that

∣∣∣T̂ c
η

∣∣∣ ≥ n. Thus ση can be lower bounded

as ση ≥ (1− δn), from which the result follows.

Remark 3. Although the above theorem gives a recipe for

constructing a robust support from T̂ , other heuristics can be

developed to obtain a more reliable robust support for the re-

construction optimization objective. For example, rather than

randomly matching lη elements of q̂, we retain the localization

output for the first lη most trusted nodes. Suppose s ∈ [0, 1]m

is a vector of confidence values2 for the localization output for

each node, then a robust support can be given by:

T̂ c
η =

{
T̂ ∩ {argsort ↓ (p ◦ s)}

lη
1

}c

(25)

VI. CASE STUDIES

A. Data Driven Model

Suppose, instead of the linear model in (6), one only has

available the synchronous data tuple {σi,yi}, i = 1, . . .Nd,

where yi ∈ R
m are measurements collected from the process

of interest and σi ∈ R
nσ are associated vectors of exoge-

nous monitoring variables3. Let f(.; θ) : R
nσ 7→ R

m be a

parametrized nonlinear mapping with parameter θ selected to

minimize the empirical loss function:

J(θ) =
1

Nd

Nd∑

i=1

‖yi − f(σi; θ)‖
2
. (26)

If Nd is big enough, the residual {yi − f(σi; θ
∗)} can be as-

sumed to be unbiased. Thus, a linear model of the uncertainty

can be obtained by a subspace reduction on the residual data.

This can be obtained for instance by performing a Principal

Component Analysis (PCA) dimensionality reduction on the

error covariance matrix

E =
1

Nd

Nd∑

i=1

(yi − f(σi; θ
∗)) (yi − f(σi; θ

∗))
⊤
.

Let Φ ∈ R
m×n, n < m be a matrix whose columns correspond

to the first principal vectors of E. Then the data driven linear

model of the process to be used for resilient reconstruction is

given by

y = f(σ; θ∗) + Φx+ ν + e, (27)

with the model error bound ‖ν‖ ≤ O(sn+1), where sk is the

kth singular value of E.

Thus, given T = supp(e) with |T | >= n and T c ,

{1, . . . ,m}\T , the reconstruction is obtained as follows:

x̂ = argmin
x∈X

‖yT c − f(σ; θ∗)T c − ΦT cx‖
2

ŷT c = yT c

ŷT = f(σ; θ∗)T − ΦT c x̂

(28)

with the reconstruction error given by Corollary 1 ( or Theo-

rem 2 if T is replaced with T̂η).

2In most Machine Learning classification decision, it is possible to return
an associated confidence value by calculating a normalized distance from the
boundary.

3These are supporting source of measurement which are assumed to be
secure. Examples of such include; ambient conditions, external vibration
measurements, thermal images, network login information, etc
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B. Linear Dynamical System

Next, we turn our attention to discrete linear time-invariant

(LTI) systems which have been studied quite extensively in

literature with respect to resilient estimation. First, we recap

some results and then build on top of them using materials

from previous sections.

Consider the discrete LTI system

xk+1 = Axk (29)

yk = Cxk + ek, (30)

where xk ∈ R
n represents the state of the system at time

k ∈ N, yk ∈ R
m is the output of the monitoring nodes at time

k and ek ∈ R
m denote the attack signals injected by malicious

agents at the monitoring nodes. Let T ⊂ {1, 2, . . . ,m} denote

the set of attacked nodes, then for all k, |supp(ek)| ⊂ T . The

resilient estimation problem is then defined as reconstructing

the initial state x0 from corrupt measurement {yk}
T
k=0 , T ∈

N. We look at two scenarios from literature: T is time-invariant

[2], [3] and T is time-varying [5].

1) Secure estimation for Fixed Attacked Nodes [2]

Assuming that the set T of attacked nodes is time-invariant:

Definition 1. q errors are correctable after T steps by the

decoder D : (Rm)
T

7→ R
n if for any x0 ∈ R

n, any

T ⊂ {1, 2, . . . ,m} with |T | ≤ q, and any sequence of

vectors e0, . . . , eT−1 ∈ Rm such that supp(ek) ⊂ T , we

have D(y0, . . . ,yT−1) = x0, where yk = CAkx0 + ek for

k = 0, 1, . . . , T − 1.

Proposition 1. Let T ∈ N\{0}. The following are equivalent:

(i) There is a decoder that can correct q errors after T steps;

(ii) For all z ∈ R
n\{0}, |supp(Cz) ∪ supp(CAz) ∪ · · · ∪

supp(CAT−1z)| > 2q.

Consequently, the following optimal decoder is defined for

when the set of attacked nodes is fixed:

x0 = argmin
x

‖YT − ΦT (x)‖l0 (31)

where

YT =
[
y0 y1 . . . yT−1

]
∈ R

m×T

and ΦT : Rn 7→ R
m×T is a linear map given by:

ΦT (x) =
[
Cx CAx . . . CAT−1x

]
∈ R

m×T .

2) Secure estimation for Varying Attacked Nodes [5]

Assuming that the set T of attacked nodes can change with

time but bounded as in |T | ≤ q:

Definition 2. q errors are correctable after T steps by the de-

coder D : (Rm)
T
7→ R

n if for any x0 ∈ R
n and any sequence

of vectors e0, . . . , eT−1 ∈ Rm such that |supp(ek)| ≤ q, we

have D(y0, . . . ,yT−1) = x0, where yk = CAkx0 + ek for

k = 0, 1, . . . , T − 1.

Proposition 2. Let T ∈ N\{0}. The following are equivalent:

(i) There is a decoder that can correct q errors after T steps;

(ii) For all z ∈ R
n\{0} ,

T−1∑
k=0

∣∣supp(CAkz)
∣∣ > 2q.

Consequently, the following optimal decoder is defined for

when the set of attacked nodes is not fixed:

x0 = argmin
x

∥∥y(T ) − Φ(T )x
∥∥
l0

(32)

where

y(T ) =




y0

y1

...

yT−1


 ∈ R

mT ,

Φ(T ) =




C

CA
...

CAT−1


 ∈ R

mT×n.

Throughout the rest of the paper, we assume that the set

T of attacked nodes can change with time but bounded as in

|T | ≤ q. Interested readers are referred to the reference [5] for

detailed discussion of the advantage of this assumption over

more traditional assumption of fixed set of attacked nodes.

3) Featurization of Observability Matrix

Given an integer ng ≤ n, consider the singular value

decomposition of the observability matrix in (32) given by:

Φ(T ) =
[
U1 U2

] [ Σ1

Σ2

] [
V ⊤
1

V ⊤
2

]

= U1Σ1V
⊤
1 + U2Σ2V

⊤
2 , (33)

where U1 ∈ R
mT×ng , U2 ∈ R

mT×(n−ng), Σ1 ∈ R
ng×ng

and U2 ∈ R
(n−ng)×(n−ng). We define the PCA feature

corresponding to the actual set of measurement y∗
(T ) as the

linear transformation

g , Σ1V
⊤
1 x0 = U⊤

1 y∗
(T ), (34)

which results in the measurement model

y(T ) = U1g + e+ v, (35)

with ‖v‖ ≤ σ̄ng+1 ‖x0‖ and g ∈ G, where the set G is

characterized by ‖g1 − g2‖ ≤ δ for all g1,g2 ∈ G and σ̄i
is the ith biggest singular value of Φ(T ).

As will be seen later, using the feature measurement model

in (35) for resilient estimation creates a tradeoff between

reconstructability4 and reconstruction error.

It is also possible to use a more general nonlinear feature

transform of the form g = ψ(y(T )), ψ(.) : R
mT 7→ R

ng .

This introduce additional challenge of computing the inverse

function ψ−1(.) : Rng 7→ R
mT which is not straightforward

in general. However, since the scope of the present paper

is limited to linear systems, the linear feature transform

above turns out to be sufficient for the current work and

the consideration of nonlinear feature transform for nonlinear

systems is reserved for future work.

4defined as the total number of measurements that can be accurately
reconstructed by a resilient estimator
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4) Robust Resilient Reconstruction

The robust resilient estimator using the feature measurement

model in (35) is given by:

ĝk = argmin
‖g−ĝk−1‖≤δ

∥∥∥y(k)T̂ c
η (k) − U1T̂ c

η (k)g

∥∥∥
2

x̂0 = V1Σ
−1
1 ĝk

(36)

where

y(k) =




yk−T

yk−T+1

...

yk−1


 ∈ R

mT ,

and T̂η(k) is the robust support estimate , with a reliability

level η, at time k.

Theorem 3. Suppose a localization oracle, with a true positive

rate pi for each node i, gives an estimated support T̂ .

Let T̂η(k) be given as described in Theorem 2 (or (25)).

If lη − q ≥ ng then, with a probability of at least η, q

errors are correctable by the resilient estimator given in (36).

Furthermore, the estimation error is bounded as:

‖x̂0 − x0‖ ≤
δ

σ̄ng

min

{
1,

σ̄ng+1

1− δng

}
. (37)

Proof. The result follows by following the same procedure in

the proof of Theorem 2 using the measurement model in (35)

and noting that

‖v‖ ≤ σ̄ng+1 ‖x0‖ = σ̄ng+1

∥∥V1Σ−1
1 g

∥∥

≤
σ̄ng+1

σ̄ng

δ.

Remark 4. The size ng of the feature vector g creates a

tradeoff between reconstructability and reconstruction error

bound in that the maximum number of correctable error

qmax = max{q ∈ Z|q ≤ lη − ng} decreases with ng while

the error bound improves (1− δng
increases) with ng .

VII. CONCLUSION

The problem of reconstructing compromised signals for a

cyber-physical system under adversarial attack is considered.

The approach merges results from machine learning an es-

timation theory to produce and optimization-based resilient

estimator. It was shown that, under certain conditions, the

signals can be reconstructed even with uncertain estimation of

the support of the attack vector. The basic result was applied to

two special cases; data-driven model and linear time-invariant

system.

Finally, we highlight some open problems for future work.

There is need to validate the theoretical claims via numerical

simulation and experimental setup. Extension of the results

to nonlinear systems via nonlinear feature transform is an

open problem and reserved for future work. The constraint in

the reconstruction optimization problem is a simple quadratic

constraint. In future, we plan to consider more complicated

boundary function. The overall problem is set up for an open-

loop scenario. It remains an open question what kind of effects

would be expected if the resilient estimator is cascaded with

a controller in a closed-loop setting. Also, only measurement

error is considered with the attack uncertainty in the measure-

ment model. It will be beneficial to see some results pertaining

to model uncertainties using popular uncertainty model like

integral quadratic constraints.
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