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Abstract: Over the last decade, the number of cyber attacks targeting power systems and causing physical and economic
damages has increased rapidly. Among them, false data injection attacks (FDIAs) are a class of cyber-attacks against power
grid monitoring systems. Adversaries can successfully perform FDIAs to manipulate the power system state estimation (SE) by
compromising sensors or modifying system data. SE is an essential process performed by the energy management system
towards estimating unknown state variables based on system redundant measurements and network topology. SE routines
include bad data detection algorithms to eliminate errors from the acquired measurements, e.g. in case of sensor failures.
FDIAs can bypass BDD modules to inject malicious data vectors into a subset of measurements without being detected, and
thus manipulate the results of the SE process. To overcome the limitations of traditional residual-based BDD approaches, data-
driven solutions based on machine learning algorithms have been widely adopted for detecting malicious manipulation of sensor
data due to their fast execution times and accurate results. This study provides a comprehensive review of the most up-to-date
machine learning methods for detecting FDIAs against power system SE algorithms.

Nomenclature
m number of measurements
n number of state variables
H m × n Jacobian matrix representing the topology
x n × 1 vector of the state variable
z m × 1 vector of measurements
Z m × n measurements matrix
e m × 1 vector of measurement errors, s.t. z = Hx + e

x^ n × 1 vector of estimated state variables
W m × m diagonal matrix, s.t. wi, i = σi

−2, where σi
2 is the

variance of the ith measurement (1 ≤ i ≤ m)
τ threshold for L2-norm-based bad data detection
za m × 1 measurement vector with bad measurement
a m × 1 attack vector, s . t . , za = z + a

c n × 1 vector of estimation errors s.t. a = Hc

Vi, θi voltage magnitude and phase angle at bus i
gi j, bi j real and imaginary parts of the admittance of the series

branch between bus i and bus j

1 Introduction
The first practical power system, developed by Westinghouse
Electric company in 1886, changed the landscape of human society
[1]. Recently, the integration of information and communication
technology into power grid applications has enabled the evolution
towards a smart grid architecture. Smart grids, among others,
improve the monitoring capabilities of power systems leveraging
advanced microprocessor-based components such as phasor
measurement units (PMUs) and smart meters. Grid operators can
impose controls on electricity generation and consumption,
increasing the efficiency and reliability of power systems by
utilising the measurements from these components. At the same
time, the inclusion of smart sensing and control devices expanded
the attack landscape [2]. The increasing network interfaces of
smart grid implementations provide entry points for cyber-intruders
[3]. In December 2015, a cyberattack on the Ukrainian power grid
led to a power outage affecting more than 200,000 customers [4].

One year later, a similar but more complex attack was carried out
again in Ukraine [5]. These attack incidents confirm that the
vulnerabilities within grid devices and networks could be
maliciously exploited (even remotely) with large-scale impacts on
the system [6, 7].

It is critical to detect cyber-attacks promptly to increase the
security and reliability of the power system. This paper focuses on
false data injection attacks (FDIAs), a type of cyberattack that
injects false measurements to poison the state estimation (SE)
process [8]. Traditional bad data detection (BDD) methods are
based on the residuals between the observed and estimated
measurements [9–11]; if the residual is larger than a threshold, bad
data is suspected to exist. Despite the wide adoption of such
methods, it has been demonstrated that FDIAs can bypass BDD
algorithms. The concept of FDIAs in power systems was
introduced in 2009 [12]. Different techniques have been proposed
since then to detect FDIAs including the Kullback Leibler distance
method, fast go-decomposition, unscented Kalman filter (UKF),
Bayesian formulation, Bayesian framework, generalised likelihood
ratio, Markov chains, cosine similarity matching scheme, and
diagnostic robust generalised potential [13–26]. However, such
techniques often fail to detect FDIAs that fit the same distribution
of historical measurements and can only capture attacks that cause
abnormal system states [26]. For example, the Kullback Leibler
distance method fails to detect FDIAs in system buses where the
attacker injects a small measurement error into a specific state.
Also, the Bayesian framework and generalised likelihood ratio
methods cannot detect FDIAs if the attacker replaces the current
meter readings with historical readings that have the same
distribution. To address this issue, Majumdar and Pal [16] proposed
a technique called diagnostic robust generalised potential. First, the
system measurements are separated in leverage and non-leverage
sets, and then by employing the diagnostic robust generalised
potential method, bad data can be efficiently identified performing
residual analysis, even if FDIAs exist in the form of gross errors.
However, it is well known that identifying bad leverage points is
challenging for such largest normalised residual (LNR) statistical
tests [27].
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Machine learning algorithms have been widely applied in
power grid functions for control and monitoring purposes [28–30].
For example, Zhang et al. [28] implemented analysing modules
leveraging machine learning algorithms at different levels of the
grid network for intrusion detection. Anderson et al. [29] proposed
a machine-learning algorithm to manage the system loads and
sources. Rudin et al. [30] suggested using machine learning
algorithms to anticipate component failures in power systems. To
overcome FDIAs detection limitations, researchers have also
developed techniques leveraging machine learning algorithms to
efficiently detect such attacks [13, 15, 31–33]. Various types of
algorithms have been investigated in the literature including
supervised, semi-supervised, unsupervised, and deep learning.
Such methods demonstrate better performance in terms of accuracy
and adaptability to dynamic and uncertain grid environments [31–
34].

In this work, we present a survey of FDIAs detection methods
based on machine learning algorithms. The contributions of this
paper are as follows:

• We present a comprehensive overview of FDIAs in the power
grid including background information for SE, different FDIAs’
settings, impacts of FDIAs on power systems, and FDIAs
defence methods.

• We provide a survey of FDIAs detection methods based on the
machine learning algorithms and describe and their limitations.

• Based on the limitations of the surveyed papers, we identify
further research problems to be addressed. By providing such a
discussion, we aim to shed light on future directions that utilise
machine learning algorithms for FDIAs detection.

The rest of the paper is organised as follows: Section 2 provides the
background on power system SE, BDD methods, and FDIAs.
Section 3 provides details on different FDIA formulations and their
impact on power systems. In Section 4, we present traditional
defence strategies against FDIAs. We survey different machine
learning methods for attack detection in Section 5. Section 6
discusses the performance of machine learning algorithms in the
context of SE while conclusions are presented in Section 7.
Common notations used in the paper are listed in Nomenclature.

2 Background
2.1 Power system SE

SE enables system operators (SOs) to optimally manage, plan, and
control the power grid. SE is used to assess the system's state,
check for anomalous behaviour, and indicate if mitigation
strategies are necessary to preserve nominal operation. Depending
on the power system level that SE is applied, i.e. transmission level
or distribution level, different algorithms, assumptions, and
approximations are employed. The differences between the
transmission system (TS) and the distribution system (DS) in terms
of SE algorithms are discussed in Sections 2.2 and 2.3. Multiple SE
algorithms have been proposed aiming to optimise the
computational intensive estimation process and enable its real-time
calculation [35–45]. Despite the plurality of SE methodologies and
their application level, the core components of these analyses are

fundamentally similar. An outline of the SE process is presented in
Algorithm 1 (see Fig. 1). 

2.2 TS modeling for SE

In this case, it is typically assumed that the system is balanced,
over determined, i.e. the number of available measurements is
more than the number of unknown state variables, and that the
system nodes are connected in a mesh topology. These assumptions
simplify the analysis, contrary to DSs, which are radially
connected, unbalanced, and insufficient measurement points are
available (Section 2.3). The inputs to the SE are (i) the power
system parameters (e.g. lines, buses, branches, breaker states etc.),
(ii) the collected measurements (e.g. voltages, angles, real/reactive
power injections, and flows), and (iii) pseudo-measurements (e.g.
load forecasts, historical data etc.), which are utilised when
insufficient system information is available.

The TS model is composed of a set of buses N = {1, …, n},
where n = N  is the total number of buses. Furthermore, the states
of the system at each bus include the voltage magnitude and the
phase angle. We denoted the system states using
x = (x1, x2, …, xn)

T. Depending on the fidelity of the model, the
system measurements can include active and reactive power
injections, active and reactive power flows, voltage magnitudes,
voltage angles, current magnitudes etc. [9]. Finally, the set of
measurements is denoted as z = (z1, z2, …, zm)T, where m is the
number of measurements.

The SE inputs are used to build an accurate TS topology and the
observability matrix. By inspecting the observability matrix, we
can determine which system states are unobservable and derive
approximations using the redundancy of the over determined
system measurements as well as the pseudo-measurements. The
calculated results are passed to the main SE routine, which iterates
until an optimal system solution (based on the imposed constraints)
is reached. Solving the SE problem can be a time- and resource-
consuming procedure. Additionally, SE is sensitive to measurement
errors, which can also impact the algorithm's convergence efficacy.
Following, we present the AC SE methodology and demonstrate it
as a non-linear optimisation problem. Additionally, in Section
2.2.2, we present how, in favour of real-time performance and by
partially sacrificing the model's accuracy, we derive a linear (DC)
model for the SE problem.

2.2.1 AC state estimation: The AC SE leverages phase angles
and voltage magnitudes to construct the system states. Typically,
the phase angle at the slack bus is set as the reference, i.e. θ1 = 0,
thus it is not included in the system state vector x. With this
assumption, we define the power system states as

x = θ2, θ3, …, θn, V1, V2, …, Vn
T (1)

The measurements, z, include bus voltages and angles, as well as,
the real and reactive power flows and injections. For each bus
i ∈ N, as depicted in Fig. 2, we have

Pi = Vi ∑
j = 1

n

V j(gi jcos θi j + bi jsin θi j) (2)

Qi = Vi ∑
j = 1

n

V j(gi jsin θi j − bi jcos θi j) (3)

where Pi and Qi are the real and reactive power injections at bus i,
respectively. gi j and bi j are the real and imaginary part of the nodal
admittance matrix element Yi j, and θi j = θi − θ j is the phase angle
difference between buses i and j. 

We utilise a non-linear function vector h(x) = (h1, h2, …, hm)T to
represent the relationship as presented in (2) and (3). Thus, we
obtain the observation model z = h(x) + e, where
e = (e1, e2, . . . . , em)T is the vector of measurement errors [46].
These measurement errors are assumed to be independent of each

Fig. 1  Algorithm 1: overview of the SE process
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other and follow the Gaussian distribution N(0, W), in which W is
the covariance matrix of the measurement errors

W = diag σ1
2, σ2

2, …, σ2n
2 (4)

The weighted least square (WLS) technique is one of the most
commonly used methods for SE [9]. In WLS, the estimates are
obtained by minimising the sum of the residual squares as
illustrated in (5)

x^ = arg min
x

J(x)

= arg min
x

(z − h(x))T
W

−1(z − h(x))
(5)

The optimisation problem presented in (5) can be solved using the
iterative normal equation method [44]. At any given point, the
solution should satisfy the first-order optimal condition of (6)

G1(x^) = ∂J(x)
∂x x = x̂

= − H
T

x^ W
−1

z − h x^ = 0 (6)

where H(x) = ∂h(x)/∂x is the Jacobian matrix (7) derived from the
function vector h(x), and x^  is the estimated state vector

H(x) = ∂h(x)
∂(x) =

∂h1(x)
∂x1

∂h1(x)
∂x2

⋯
∂h1(x)

∂xn

∂h2(x)
∂x1

∂h2(x)
∂x2

⋯
∂h2(x)

∂xn

⋮ ⋮ ⋱
∂hm(x)

∂x1

∂hm(x)
∂x2

⋯
∂hm(x)

∂xn

(7)

Equation (6) can be iteratively solved using the Newton–Raphson
method, and x^  can be approximated with

x^v + 1 = xv + ((G2
T
G2)

−1
G2

T
G1) x = xv

(8)

where G2 = ∂2
J /∂x

2 is the Hessian matrix of J(x) and v ∈ N is the
iteration step.

Alternative methods, such as the maximum likelihood
estimation (MLE) can be employed to solve the optimisation
problem of (5) [46]. Additionally, orthogonal methods can be
utilised to solve the first optimal condition introduced of (6) [44].
However, the rate and convergence accuracy of these heuristic
methodologies rely solely on the system observability matrix
characteristics (i.e. rank).

2.2.2 DC state estimation: To alleviate the computational burden
introduced by non-linear AC SE, the DC SE model (a linear
measurement model) is often considered at the sacrifice of
accuracy. The DC SE assumes that the line resistance is negligible
compared to the corresponding line reactance, and the phase angle
difference between neighbouring nodes is small (i.e. zero degrees
angle difference). Also, the voltage magnitudes are assumed to be
1 p.u. Thus, dissimilar to the AC SE, in DC SE, the system states
are composed only from the phase angles x = θ2, θ3, …, θn

T.
Moreover, since the reactive power flow between buses is
negligible and the reactive power injections at every bus depend on
the line susceptance, only active power flows and injections are
utilised in DC SE

Pi = ∑
j = 1, j⧸= i

n

bi j(θi − θ j) (9)

Thus, the observation model in DC SE can be formalised as

z = Hx + e (10)

where Hii = ∑ j = 1, j⧸= i
j = n

bi j and Hi j = − bi j. z = (P1, …, Pn)
T and

e = (e1, …, en)
T follow the same assumptions as in the AC SE.

Leveraging WLS to solve (10), we obtain the following objective
function formulation:

x^ = arg min
x

J(x)

= arg min
x

(z − Hx)T
W

−1(z − Hx)
(11)

The solution satisfies the following requirement:

G1(x^) = ∂J(x)
∂x x = x̂

= − H
T
W

−1
z − Hx^ = 0 (12)

which can be simplified to

x^ = (HT
WH)−1

H
T
Wz (13)

2.2.3 Dynamic SE (DSE): SOs have extensively used both AC
and DC static SE to monitor TS operation and manage energy
generation. However, these SE algorithms rely on bus voltage and
angle measurements as well as active and reactive power injections
to calculate the system state estimates. The disadvantage of these
methods is that the system state approximation – using either non-
linear or linear models – depends on low-update rate steady-state
measurements, e.g. supervisory control and data acquisition
(SCADA) [36]. The current transmission infrastructure
advancements with the integration of wind and solar generation
require improved estimation algorithms able to capture the
dynamic system behaviour [37]. To address the aforementioned AC
and DC SE pitfalls, and account for the dynamic and intermittent
nature of TS with renewable penetrations, DSE algorithms have
been proposed.

The initial implementations of DSE algorithms although they
could acutely reflect the system's transient behaviour, they still
suffered from the disadvantages of the traditional SE
methodologies [39, 47, 48]. For example, to achieve faster
convergence rates, non-linear models had to be linearised causing
significant approximation errors and Jacobian system matrices had
to be recalculated at every iteration step yielding excessive
computational overheads [39]. To overcome linearisation errors
and computational intensive matrix operations, recent works have
opted for improved SE methodologies leveraging Kalman filtering
techniques. In [40], an UKF method for DSE is introduced, which
overcomes the aforementioned drawbacks and avoids the high-
order derivative calculations in favour of real-time performance.
Other works have incorporated high data-rate sampling
measurements from PMUs to increase the robustness of their
estimations [37]. For instance, the authors in [36] showed
improvements in estimation accuracy, algorithm convergence, and
minimised the estimation complexity. Their algorithm allows
leveraging UKF, PMU measurements, as well as a decentralised SE
approach, demonstrating a practical implementation for TS DSE.

2.3 DS modelling for SE

In the past, SE was applied exclusively on the transmission level
since the distribution level can be simplified to a lumped passive
load structure. However, with the deployment of distributed
generation, distributed energy resources (DERs), microgrids,
electric vehicles, and energy storage systems, the development of
comprehensive algorithms that account for bidirectional power
flow between transmission and distribution levels is imperative.

Fig. 2  Transmission network element between bus i and bus j
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The first DS state estimators (DSSEs) are adaptations of the
corresponding TS counterparts [38]. However, DS architectures
differ significantly from transmission networks.

DSs are radially connected and their interconnections typically
present high resistance to reactance (R/X) ratios. On the other
hand, TSs are connected in lattice-based formations, aiding
redundancy, and their line resistances are negligible. Second, there
are fewer measurement points in DSs when compared to TSs, and
even when measurements are available, they are usually collected
deficiently (every 15 min or even longer). Also, measurements
might not be time synchronised and can be inaccurate (due to
improper connections or not calibrated meters). Thus, relying on
pseudo-measurements for DSSE is a common practice.
Furthermore, DSs are constantly changing by integrating
distributed generation units, loads, and prosumers, thus DSSE
algorithms should be able to account for such characteristics.
Finally, TSs are treated as perfectly balanced systems by SE
algorithms; such algorithms cannot be applied for DS topologies
since they present serious imbalances between phases and require
three-phase modelling.

2.3.1 SE for unbalanced system operation: The dynamic
behaviour of DSs, furnishing variable power penetrations, and
demands at every system bus, generates load flow differences
between phases. Thus, for practical DSs, solving the unbalanced
three-phase problem is required to perform DSSE. For instance, in
[45], the authors solve the DSSE problem utilising unbalanced
single-phase and two-phase measurement models. Equations (14)
and (15) demonstrate the active and reactive power flows for the
three-phase system model at bus i and phase p. In the
aforementioned equations, V is the voltage and θik

pm present the
phase angle difference between bus i with phase p and bus k with
phase m. gik

pm and bik
pm are the corresponding real and imaginary

parts of the admittance matrix representing the conductance and
susceptance for each bus, respectively

Pi
p = Vi

p ∑
k = 1

N

∑
m ∈ {a, b, c}

Vk
m

gik
pmcos θik

pm + bik
pmsin θik

pm (14)

Qi
p = Vi

p ∑
k = 1

N

∑
m ∈ {a, b, c}

Vk
m

gik
pmsin θik

pm − bik
pmcos θik

pm (15)

Additionally, the line-to-line voltage as well as the real power
injection of the two-phase measurement model is demonstrated in
(16) and (17). To calculate the mentioned bus voltages and power
injections, (i) the three-phase power injection, the phase-to-neutral
voltage magnitude, and the magnitude of current injection at the
current substation, in addition to, (ii) the two-phase voltage
magnitudes and power injections at every distribution centre-
tapped transformer are necessary

Vi
pm

meas = Vi
p 2

+ Vi
m 2

− 2 Vi
p

Vi
m cos θi

p − θi
m

+eVi
pm

(16)

Pimeas
pm = Vi

p ∑
k = 1

N

∑
n ∈ {a, b, c}

Vk
n

gik
pncos θik

pn + bik
pnsin θik

pn

− Vi
m ∑

k = 1n ∈ {a, b, c}

N

Vk
n

gik
pncos θik

mn + bik
pnsin θik

mn

+ePi
pm

(17)

Furthermore, when the phase-to-neutral voltage magnitudes and
the real power injection measurements are available – assuming
ideal centre-tapped and single-phase transformers (i.e. the
transformer losses are negligible) – we can acquire the following
single-phase measurement equations:

Vi
p

meas = Vi
p + eVi

p (18)

Pimeas
p = Pi

p + ePi
p (19)

Q1meas
p = Q1

p + eQ1
p (20)

Performing the Kron reduction method on the initial four-wire
matrix, which also includes the line-to-neutral impedances, the
simplified (row and column reduced) line impedance can be
obtained by using the resistance (R) and reactance (X) of the line. A
three-phase (a, b, and c) line impedance matrix between bus i and
bus j can be calculated by utilising (21)

ZImp(abc, i j) = Rabc, i j + jXabc, i j

=

ZImp(aa, i j)
n , ZImp(ab, i j)

n , ZImp(ac, i j)
n

ZImp(ba, i j)
n , ZImp(bb, i j)

n , ZImp(bc, i j)
n

ZImp(ca, i j)
n , ZImp(cb, i j)

n , ZImp(cc, i j)
n

(21)

This methodology can be applied irrespective of the system
modelling being single-phase, two-phase, or three-phase. For
example, if we opt for a single-phase model, the corresponding row
and column of the other two phases will be zero.

Furthermore, the branch voltages and branch currents modelling
is shown in (22) and (23), respectively. The mentioned branch
voltage and current modeling allows for direct use in voltage-based
or branch current-based SE methods [42]

Vabc, i j =

Vai

Vbi

Vci

−

Va j

Vb j

Vc j

(22)

Iabc, i j =

Ia, i j

Ib, i j

Ic, i j

(23)

Other methods leverage WLS to construct a linear SE model for
unbalanced three-phase systems [41]. For this linear
approximation, the bus voltages and branch currents as well as the
active and reactive power flow measurements are essential for the
three-phase unbalanced system model. Furthermore, the SE
algorithm requires timely synchronised phasor measurements. We
demonstrate the measurement vector, state vector, and the process
matrix H in (24)–(26), where the subscripts r and i are the real and
imaginary values. The system residuals for unbalanced operation
are formulated in (27). All the aforementioned differences in
system modelling make DSSE an arduous and computational
intensive process limiting its real-time applicability

z = zr + jzi (24)

x = xr + jxj (25)

H = Hr + jH j (26)

rr + jri = zr + jzi − (Hr + jHi)(xr + jxi) (27)

2.4 BDD and identification

With bad data injected during the SE, the states might not be
accurate, which could lead to wrong decision making and
economic losses. Therefore, it is necessary to sanitise the
measurements by removing the bad data. Some bad data such as
negative voltage magnitudes can be easily removed before the SE
process. However, other types of bad data require sophisticated
methods in order to be detected, identified, and removed from the
true measurement vectors.

2.4.1 Bad data detection: The goal of BDD is to determine
whether bad data exist in the measurement vectors [49, 50]. The
chi-square test is a statistical method widely used for this process.
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Chi-square assumes that the distribution of measurements follows a
Gaussian distribution. Thus, the test statistic J(x^) (calculated in
(28)) follows chi-square distribution when there exist no bad data
[51]:

J(x^) = ∑
i = 1

m
zi − hi(x^) 2

σi
2 (28)

where ri = zi − hi(x^) is known as the residual. If J(x^) is larger than
a predetermined threshold, then bad data exist in the
measurements.

2.4.2 Bad data identification: The goal of the bad data
identification procedure is to determine which set of measurements
contains bad data [52, 53]. LNR is one of the most commonly used
methods for bad data identification [54]. Similar to the chi-square
test method, LNR assumes that the bad measurements have large
residuals. The following steps detail the process of identifying bad
data using LNR:

i. Calculate the gain matrix G and covariance matrix Ω

G = H
T ⋅ W ⋅ H (29)

Ω(x^) = W − H(x^) ⋅ G
−1 ⋅ H

T(x^) (30)

i. Calculate the normalised residuals after solving the estimation
problem using the WLS method

ri
n =

ri

Ωi

i = 1, 2, . . . , m (31)

ii. Find the maximum value rmax
n  of ri

n for i = 1, 2, …, m.
iii. Compare the LNR with a pre-determined threshold τ. If

∥ rmax
n ∥ > τ, the corresponding measurement is assumed to be

bad (modified).
iv. Remove the suspected bad measurement from the

measurement set and go to step one.

Although residual-based methods are widely used, it has been
demonstrated that they cannot efficiently detect FDIAs [55].

2.5 FDIAs in power systems

FDIAs are a class of cyber-attacks, which can bypass BDD
mechanisms, and aim to compromises the data integrity of power
system measurements. SOs utilise SE on both the transmission and
the distribution level. SE results serve as inputs to other crucial
power system services (e.g. optimal power flow, economic
dispatch, demand–response, contingency analysis etc.), thus their
validity is of paramount importance. Ensuring accurate results
requires meticulous line interconnection and topology modelling as
well as scalable and dynamic algorithms. Furthermore, efficient SE
algorithms that can harness pseudo-measurements (based on
historical data or forecasts) and comply with the real-time system
operational requirements are crucial. Attackers, either intrusively
(e.g. having physical access to a grid asset, which reports
measurements) or non-intrusively (e.g. by spoofing a
communication channel over which power system measurements
are propagated) can maliciously modify and inject false data in the
system. Typically, a FDIA is formulated as follows:

za = z + a (32)

where za is the tampered measurement vector, z is the true
measurement vector, and a is a non-zero attack vector added to the
true measurements.

To bypass BDD (i.e. not affect residuals), the attack vector a is
constructed as a linear combination of the column vectors of the
Jacobian H matrix, that is, a = Hc, where c is an arbitrary n × 1
non-zero vector. The attack vector is constructed as follows:

a1

a2

⋅
am m × 1

= c1

h11

h21

⋅
hm1

+ ⋯ + cn

h1n

h2n

⋅
hmn

(33)

za = H(x + c) (34)

and the new estimated state x^a is equal to

x^a = x^ + c (35)

The value of c should not exceed the maximum alterable tolerance
of any measurement to avoid triggering alarms and draw the grid
operator's attention [56]. Following this procedure, za produces the
same residual as the real measurement vector z, and thus bypasses
the residual-based BDD (for the DC SE model)

ra = ∥ za − Hx^a ∥

= ∥ z + a − H(x^ + c) ∥

= ∥ z + a − Hx^ − Hc ∥

= ∥ z − Hx^ + (a − Hc) ∥

= ∥ z − Hx^ ∥ = r

(36)

In (36), we prove that if a = Hc, then ra = r, indicating that the
attack succeeds without changing the measurement residual or
triggering the BDD. FDIA formulation for the AC SE is similar to
the DC SE case. The attack bypasses the BDD if a = h(x^a) − h(x^),
and therefore the residual remains unaltered (37)

ra = ∥ za − h(x^a) ∥

= ∥ z + a − h(x^a) + h(x^) − h(x^) ∥

= ∥ z − h(x^) + a − h(x^a) + h(x^) ∥ = r

(37)

Many researchers provide use cases where the TS SE can be
maliciously manipulated if PMU data, remote terminal units’ data,
or SCADA measurements are compromised, as well as how the
corresponding FDIAs can be constructed [12, 57–59]. Owing to the
differences between TS and DS modelling and operation, the SE
mechanisms can differ significantly as discussed in Sections 2.2
and 2.3. The heavily interconnected DS topology, the number of
insufficient measurement points, dynamic and unbalanced DS
operation complicate the DSSE process. Attackers can leverage the
elaborate DSSE to mount FDIAs and avoid detection. Research
works discussing FDIAs which target DS have been reported [60–
62]. Detecting and mitigating FDIAs is a field of on-going
research. An overview of the state-of-the-art methodologies
leveraging machine learning is discussed in Section 5.

3 False data injection attack settings and impacts
In this section, we provide a brief overview of how FDIAs can be
launched according to the attack knowledge settings (summarised
in Table 1) and discuss their potential impacts on power systems
(summarised in Table 2). 

3.1 FDIAs settings

Typically, system knowledge includes meter measurement data, the
Jacobian matrix or system topology, system parameters, and
control commands (e.g. switch states). Moreover, to compromise
the DS SE, the attacker should know the state estimates to
successfully launch a FDIA. Based on the attacker's knowledge,
attackers can be classified into two categories: (i) attackers with
full system knowledge and (ii) attackers with incomplete or partial
system knowledge. Full system knowledge enables the attacker to
design FDIAs that will not trigger detection mechanisms. On the
other hand, in the case of incomplete or partial information, the
attackers may not know the exact system topology (e.g. Jacobian
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matrix). Thus, attackers first need to approximate this crucial
information (i.e. topology matrix) leveraging meter measurements
or historical data, before a stealthy FDIA can be launched.

3.1.1 FDIAs with full system knowledge: The concept of FDIAs
in the power grid, originally introduced by Liu et al. [12],
investigated two different FDIAs scenarios: (i) attacks with limited
access to meters and (ii) attacks with limited resources to
compromise a large number of meters. In the first scenario, the
attacker could only compromise k specific meters due to different
security requirements of each meter. For the attack to have
considerable impact, the authors assume k ≥ m − n + 1, where m is
the number of measurements and n is the number of states. In the
second scenario, the authors assume that there are no protected
meters, but the attacker has limited resources and could only
compromise a limited number of meters. Owing to resource
constraints, the attacker could not compromise more than k meters.
In both scenarios, the authors prove that the attacker could
systematically and efficiently construct attack vectors, which can
modify the SE results without being detected. Both scenarios are
experimentally demonstrated on IEEE 9, 27, and 300 bus test
cases. The simulation results illustrate the significant impact of
FDIAs (e.g. blackouts in large geographic areas).

Sou et al. [63] studied how the minimum set of meters –
required to compromise the system – can be found. The authors
assume that there are no empty measurements, i.e. all the rows of
the observation model matrix H are non-zero. In their work, the
attacker intends to spoof a specific measurement, e.g. the kth
measurement. To avoid detection, the attacker also modifies other
measurements according to (34). Thus, the attacker's objective is to
minimise the number of compromised meters to reduce the attack
cost and detection risk. The sparsest stealthy FDIAs problem
formulation is the following:

αk = min : ∥ Hc ∥0

Subject to: H(k, : )c = 1
(38)

where αk is defined as the security index of the kth measurement,
i.e. the minimum number of measurements required to be
compromised for a stealthy FDIA to spoof the kth measurement.
Multiplying by a constant c, the attacker can tamper the kth
measurement with any value. The security index of the
measurements helps the SO to understand the data manipulation
patterns and allocate protective resources effectively. To solve the
optimisation problem of (38), various methods have been
proposed, such as the mixed-integer linear programming (MILP)
method and the matching pursuit methodology [63, 64].

3.1.2 FDIAs with partial or incomplete knowledge: In [65], the
authors study FDIAs with incomplete transmission line admittance
information, i.e. the attacker does not possess an accurate version
of matrix H. As a result, the attacker does not know the exact

values of the transmission line admittance for any part of the power
grid topology. However, the attacker could build probability
distributions and infer the unknown line admittance with offline
and online information. The offline information relies on historical
measurements, while the online information is collected by
deploying meters or PMUs in the system. The authors compare the
impact and detection probability of such attacks against full
knowledge FDIAs. The simulation results demonstrate that the
attacker could still launch successful FDIAs even with incomplete
system information.

Other researchers investigate data-driven approaches to build
the Jacobian matrix H and launch FDIAs, referred to as blind
FDIAs [67, 68]. In blind FDIAs, no additional knowledge (except
system measurements) is required, and the attack is performed
utilising the equivalent H matrix constructed in accordance with
the acquired measurements. The measurements can be obtained
either by direct access to the system or by spoofing the system for a
short time period.

Kim et al. [67] applied singular value decomposition (SVD) to
exploit the subspace of matrix Z and construct the grid topology. Z
is constructed using a sample of the system measurements over a
period t where the ith row represents the measurements at time i

Z =

z11 z12 ⋯ z1m

z21 z22 ⋯ z2m

⋮ ⋮ ⋱ ⋮
zt1 zt2 ⋯ ztm

(39)

The covariance matrix of Z, ΣZ, is computed as follows:

ΣZ ≜ E[(Z − E[Z])(Z − E[Z])T] = HΣxH
T + σ

2
I (40)

where σ
2
I is the covariance matrix of the error vector e

(z = Hx + e) and Σx is the covariance matrix of the state vector x.
The basis matrix of HΣxH

T is calculated by applying SVD to ΣZ,
i.e. by finding a unitary matrix U, a rectangular diagonal matrix Λ,
and a unitary matrix V such that ΣZ = UΛV

T. The n columns of the
unitary matrix U are equivalent to the eigenvectors of matrix
HΣxH

T, which form the basis of the column space of HΣxH
T.

Since the column space of HΣxH
T is equivalent to the column

space of H, the n columns of U also form a basis of the column
space of H. Thus, the attacker can construct a potential attack
vector a using matrix U.

Similarly, Yu and Chin [68] leveraged principal component
analysis (PCA) to construct blind FDIAs. PCA is a dimensionality
reduction and data transformation method used to reduce a large set
of variables to a small set while retaining the critical information of
the original set. The authors apply PCA to z, which is the
measurement vector, and obtain a transformation matrix Hpca, as
well as, the principal components vector x~, illustrated in (41)

z ≃ p
~

1 p
~

2 ⋯ p
~

n

x
~

1

⋮
x
~

n

≡ Hpcax
~

pca (41)

where z is an m × 1 over determined measurement vector, Hpca is
an m × n matrix with n eigenvectors (p

~
i), and x

~
pca is the n × 1

principal components vector. The PCA reduced Hpca is leveraged
for the construction of the blind FDIA and the formation of the
attack measurement vector za as described in (42) and (43)

apca = Hpca × c (42)

za = z + apca (43)

Teixeira et al. [57] studied stealthy FDIAs in dynamic systems
where the H matrix is changing. The attack is constructed
following [63]. The authors mathematically prove the possibility of

Table 1 FDIA categories
FDIA categories References Examples
attack with full
knowledge

 [12, 17, 63, 64] access specific meters,
minimise the number of

attacked meters
attack with
incomplete
knowledge

 [32, 61, 65–69] use online and offline data,
utilise market price data

 

Table 2 Impacts of FDIAs on power system
Impacts References Examples
power grid operation  [70–72] LR attack
distributed energy routing
process

 [57, 73] energy deceiving
attack

affect the operation of the
deregulated electricity market

 [74, 75] economic attack
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local stealthy FDIAs. If the changes in H do not affect the
compromised measurements, the attack vector – constructed using
the original H – remains stealthy after any system change.
Furthermore, the authors empirically study the impact that the
magnitude of an attack vector can introduce on the success rate of
the attack. They conduct experiments utilising the IEEE 39 bus test
case with energy management system (EMS) software including
SE and residual-based BDD. The results validate that even large
attack vectors can bypass the detection.

Kekatos et al. [66] proposed an algorithm leveraging locational
marginal prices (LMPs), which is computed from a network-
constrained economic dispatch problem to recover the grid
Laplacian with a regularised MLE [76, 77]. Esmalifalak et al. [32]
proposed an independent component analysis algorithm to estimate
the H matrix and system topology by observing the power flow
measurements. Similarly, Liu et al. [69] showed that the attacker
could launch an attack in a local region possessing only local
system information.

Deng et al. [61] proposed a practical FDIA model against SE in
DSs, where the attacker can successfully launch FDIAs with partial
system information. The authors illustrate how the attacker could
estimate the system states based on a small amount of power flow
or power injection measurements. The proposed method reduces
the cost of obtaining system states, making FDIAs more realistic
against SE on the distribution level. The proposed model is
demonstrated on an IEEE test feeder. The results show that attacks
can effectively compromise the SE avoiding detection.

3.2 Impacts of FDIAs on power systems

FDIAs can cause significant economic or physical impacts on the
power system. In this section, we review the effects of FDIAs and
summarise them in Table 2.

3.2.1 Load redistribution (LR) attack: Yuan et al. [70] proposed
a particular type of FDIA, called LR attack, which targets the
security-constrained economic dispatch (SCED) and can
potentially affect the power grid operation. The power system uses
SCED to reduce the total system operation cost by properly re-
dispatching the generation output. Owing to LR attacks, the SCED
provides incorrect solutions based on corrupted state estimates and
drives the system to infeasible operating states. Moreover, the LR
attacks can potentially cause load shedding events immobilising
any immediate corrective action [70, 72].

3.2.2 Energy deceiving: Lin et al. [73] studied a new variation of
FDIAs named energy deceiving attacks, which target the routing
process of energy distribution. The authors introduce a distributed
energy routing scheme to find the optimal route for energy flow
between nodes of the grid. Each node could be either an energy
consumer or an energy producer. To distinguish different nodes, a
measurement tool is used (e.g. a smart meter). All nodes
communicate with each other to share information such as
measurements, requests, and demands. The energy deceiving attack

is conducted by spoofing the information exchanged between
nodes. Malicious energy information or malicious link-state
information is injected into the energy request and response
messages of the nodes. A successful attack can manipulate the
memory of a measurement tool and inject the false demand and
supply messages to the grid. The authors analyse the impact of the
energy deceiving attack based on the proposed method and
conclude that the attack would create imbalances between demand
and supply. As a result, the cost of energy distribution can severely
increase.

3.2.3 Economic attack: In terms of impacts on economic
operations, Xie et al. [74] demonstrated how FDIAs affect the
energy market. Real-time market prices are determined using ex-
post LMP values, which in turn rely on the actual SCADA
measurements to calculate their final settlement prices. Thus, if an
attacker can manipulate the system measurement data, the results
of the SE, and consequently, the electric energy price can be
affected. The authors use a linear form of optimal power flow
(OPF), DC OPF, to calculate the LMPs and formulate the attack as
a convex optimisation problem. There are two cases applied to the
IEEE 14 bus system, one for a single congested line and the other
for three congested lines. The study illustrates that FDIAs can
manipulate the nodal price of the ex-post market and can also bring
financial profits to attackers. The authors also explore, in a later
study [75], more realistic attack scenarios assuming threat models
in which the attackers can only manipulate a limited number of
sensors.

4 Defences against FDIAs
In this section, we discuss existing countermeasure approaches
against FDIAs. Table 3 lists different detection methods and their
limitations. 

Liu et al. [12] showed that if the attacker knows the system
matrix H and can compromise k ≥ m − n + 1 meters, then she/he
can effectively inject the malicious vector to the measurement
vector z without being detected. Therefore, it is crucial to identify
and protect a set of meter measurements. Bobba et al. [17]
highlighted the requirement to identify and protect a set of
measurements to prevent FDIAs. Both studies leverage a brute
force approach to identify the set of measurements that require
protection. Dan et al. [55] proposed a greedy algorithm to find the
minimum set of measurements essential to be protected. Owing to
the large number of meters in the power system and the limited
protection budget, the authors consider protecting a subset of
meters ρ to increase the security level of the system. Subsequently,
the authors consider two objective functions:

i. Maximise the minimum attack cost:

ρm = max
ρ

min
k

αk

Subject to :ϱ(ρ) ≤ π

(44)

where ϱ(ρ) is the protection cost, π is the budget, and αk is
defined as the security index of the kth measurement (38).

ii. Maximise the average attack cost

ρm = max
ρ

1
m

∑
k ∈ M

αk (45)

To minimise the protection cost, Bi and Zhang [79] framed the
protection problem as a variant of the Steiner tree problem in a
graph. Given an undirected graph with non-negative edges and a
set of vertices, which represent transmission lines and buses in the
power network, the Steiner tree problem entails finding a tree with
minimum weights, which contains all the vertices [92]. To select
the minimum set of meters to be protected, they propose two
algorithms: a Steiner vertex enumeration algorithm and MILP. The
proposed algorithms significantly reduced the computational
complexity and are able to find the minimum set of meters

Table 3 Defense strategies against FDIAs
Methods References Limitations
protecting minimum
sets of meters

 [17, 55, 78–80] protected only measurements
that are trusted

using PMUs  [81, 82] vulnerable to GPS spoofing
attack

defences based on
game theory

 [83–86] rationality of the agents and
modelling challenges

defences based on
cryptographic
methods

 [87–89] not practical for large
systems with a limited budget

topology defence
method

 [90] it is possible for the attacker
to learn and guess the new

configuration
proactive approaches
to mitigate FDIAs

 [91] computationally intensive
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necessary to be protected. The shortcomings of protecting a
minimum set of meters are two-fold (i) possible decrease of
redundancy and (ii) occasional lack of security.

Kim and Poor [82] proposed another approach to protect the
minimum set of measurements. The authors suggest installing
PMUs in the critical substations of electric power systems. PMU is
a global positioning system (GPS)-based measurement device that
directly measures synchronised voltages and phase angles. The
GPS connected to the PMU devices time-stamps the
measurements, thereby preventing the measurements from being
compromised by attackers. Even though installing PMUs is a
powerful solution to prevent FDIAs, it is costly to deploy PMUs on
a large scale. The cost of a large-scale PMU deployment has led to
additional research on the optimal placement of PMUs in power
systems. To reduce the number of PMUs used in a system, Chen
and Abur [81] developed a placement algorithm to find out
locations for PMU installations. In addition to cost concerns,
PMUs are vulnerable to GPS spoofing attacks, which could
invalidate the PMU data time-stamps (by faking the GPS signal)
and compromise the reliability of all the synchrophasor data [93].

In terms of approaches that utilise game theory concepts, Wei et
al. [83] proposed a stochastic-based approach for the protection of
the power system from coordinated attacks. Coordinated FDIAs
manipulate power system measurements – by emulating the real
behaviour of the system – and thus remain undetectable. The
authors' design an optimal load shedding algorithm to assess the
effects of coordinated attacks, e.g. where and how many loads to be
shed under successful attacks. The effect of the attack is then used
in a resource allocation stochastic game to model the interactions
between a malicious attacker and a defender. The authors prove the
effectiveness of the proposed approach in protecting the power
system from FDIAs. However, the game theory model is not
scalable, nor realistic, since it models the interaction between
defenders and attackers as a series of causal events [94].

Sun et al. [87] proposed an encryption-based method leveraging
a dynamic secret to protect wireless communications. The method
encrypts the measurement data by using the aforementioned
secrets, which are dynamically generated at the sender's side to
protect the security and privacy of the power data. To create the
encryption key, instead of using the transmitted data, which are
vulnerable to eavesdropping attacks, the authors utilise a packet re-
transmission communication protocol. The re-transmission
protocol employs steganography to encrypt the measurement data
rather than send them in plaintext. Although encryption methods
can protect measurements against FDIAs, they introduce
computation overheads and increase communication latency, which
may become impractical for large and densely interconnected
systems with limited edge-computing resources. To address
computation overheads induced by encrypted communications (for
the measurement exchange), the authors in [95] proposed a
lightweight hardware-based security primitive, which leverages
real-time battery entropy for ephemeral key generation and secure
authentication between power system assets.

Shahid et al. [90] proposed a new topology defence model to
protect the power system from stealthy blind FDIAs. The authors
exploit the concept of dummy measurement values in the power
network to detect stealthy attacks in the network. In their model,
meters in the smart grid send two different sets of measurements to
EMS, which include dummy and real measurements. The dummy
measurements rely on the real measurements and are assigned by

operators at the control centre. The dummy measurements are only
known to the SO. Thus, the SO could quickly detect any attack in
the system by comparing all the received measurements against the
dummy measurements. However, the mentioned defence model
can protect the system only for a limited duration since the attacker
can eventually learn or guess the configuration.

Li et al. [91] introduced a proactive approach to mitigate FDIAs
(PAMA) in smart grids. PAMA can protect the crucial system
information such as the original measurement data, system
configurations, and grid connections from leakage or even theft.
The proposed method focuses on the proactive prevention and
mitigation of FDIAs before an attack is conducted. To enhance
system robustness against FDIAs, the authors design a distributed
computing model that integrates the Paillier cryptosystem to
encrypt all system information (including the original measurement
data, system configurations, and grid connections). However,
PAMA is computationally intensive and challenging to model.

5 Machine learning for FDIAs detection
Machine learning is a form of artificial intelligence that enables
computers to learn and improve without being explicitly
programmed [96]. Different machine learning algorithms have
been proposed by researchers to enable FDIAs detection. The
existing use of machine learning algorithms can be categorised as
shown in Table 4. In this section, we first discuss the metrics used
for the performance evaluation of machine learning-based FDIAs
detection algorithms. Leveraging these metrics, we review the
existing literature and compare their performance.

5.1 Performance metrics

A multitude of metrics has been adopted to evaluate the
performance of the detection methods. Accuracy, precision, recall,
F1 score, and receiver operating characteristic (ROC) curve are
among the most common metrics. With the true label of a
measurement and its predicted label, the output of a detection
model can be divided into true positive (TP): indicating a correct
positive prediction, true negative (TN): a correct negative
prediction, false positive (FP): an incorrect positive prediction, and
false negative (FN): an incorrect negative prediction [110].

Accuracy is the ratio of the number of correct predictions to the
number of total predictions

Accuracy = TP + TN
TP + TN + FP + FN (46)

Accuracy is meaningful when the measurement data is balanced
(when the number of positive and negative measurement samples
are equal). To evaluate the performance of the detection model
with imbalanced data, precision, recall, and F1 score are often
considered. Precision (also called positive predictive value)
describes the capability of a model to identify an attack's overall
true positive predictions [111]. It is represented as the ratio of the
correct positive predictions to the number of samples labelled as
positive

Precision = TP
TP + FP (47)

The recall (also called sensitivity) gives the model the capability to
identify all attacks [111]. Recall is described as the ratio of the
number of correct positive predictions to the number of positive
samples

Recall = TP
TP + FN (48)

From (47) and (48), it can be observed that precision and recall are
closely related. For a given model, a decrease in FP (precision)
leads to an increase in FN (recall), and vice versa. To achieve an
optimal trade-off between precision and recall, the F1 score is used
to combine these two metrics. To avoid being heavily impacted by

Table 4 Summary of machine learning methods to detect
FDIAs
Type of machine learning
method

Algorithms References

supervised learning SVM and KNN  [31, 33]
 [97, 98]

semi-supervised learning semi-SVM  [31, 99, 100]
unsupervised learning FCM  [101–103]
deep learning MLP, RNN, DBN  [99, 103–105]

 [98, 106–109]
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extreme values of precision or recall, the F1 score is designed as
the harmonic average of precision and recall, as shown below

F1 score = 2 × (Recall × Precision)
Recall + Precision (49)

For a given classifier, recall and precision may vary a lot with
different sets of measurements, e.g. balanced data and unbalanced
data, making it hard to evaluate the performance of a classifier. To
have a stable representation of the classifier performance, the ROC
curve is often used. In a continuous binary classifier, the output is a
continuous variable ranging from 0 to 1. Thus, a threshold is
leveraged to divide the outputs into positive and negative. Different
thresholds result in different TP rates (TPR, equals to recall) and
FP rates (FPR = FP/(FP + TN)). ROC curve plots TPR (y-axis)
against FPR (x-axis) under different thresholds. The closer the
ROC curve is to the upper left corner or coordinate (0, 1) (the
larger the area under the curve), the better the performance. ROC
illustrates how well the detection method distinguishes between the
attacked and the secured measurements.

5.2 Supervised learning algorithm

Machine learning algorithms can be classified into supervised
learning, semi-supervised learning, and unsupervised learning. In
supervised learning, inputs and desired outputs are provided to the
machine to construct a function that maps the input to the desired
output.

Detecting FDIAs is considered a supervised binary
classification problem. The objective of the binary classifier is to
decide whether the given data s with m features is either z, a
normal measurement vector (negative class) or za = z + a, an
attacked measurement vector (positive class) [33]. The output class
labels are

y =
+1 for a ≠ 0
−1 for a = 0

(50)

where a is the attack vector.
The common used supervised learning algorithms are

perceptrons [112], support vector machines (SVMs) [113], k-
nearest neighbours (KNNs) [114], and logistic regression [115]. In
perceptrons, a weight vector w ∈ ℛMTr is trained such that the
output label, yi, of a sample si is predicted by the following
classification function:

f (si) = sign(w ⋅ si) =
1 for w ⋅ si ≥ 0(a ≠ 0)

−1 for w ⋅ si < 0(a = 0)
(51)

During the training phase, the weight vector is updated for each
training sample as w(i + 1) = w(i) + Δw, where
Δw = γ(yi − f (si))si and γ is the learning rate. From the
classification function, we can see that the convergence of the
perceptron algorithm can be guaranteed when the samples are
linearly separable. Therefore, it is suitable for FDIAs detection
only when a hyper plane can separate the measurements.

In SVMs, a hyper plane is constructed to separate two different
classes. The hyper plane can be represented by a weight vector w,
and a bias value b. The decision boundaries for the linear separable
data can be formulated as two parallel hyper planes using (52)

wTsi + b = + 1, if yi = + 1

wTsi + b = − 1, if yi = − 1
(52)

In (52), each line represents a support vector, as shown in Fig. 3. 
Margin D is the separation area between the two support vectors
and can be computed as

D = 2
w

2 (53)

The hyper planes can be determined by solving

min
w, ξ, b

∥ w ∥2
2 + ζ ∑

i = 1

M
Tr

ξi

Subject to: yi(w
T ⋅ si + b) − 1 + ξi ≥ 0

ξi ≥ 0 ∀i = 1, 2, 3, …, MTr

(54)

where ζ is the adjustable regularisation parameter, ξi is the slack
variable for the non-linear separable training set, and MTr is the
feature vector.

KNN is another supervised learning algorithm that assigns
labels to an unlabelled sample according to its KNNs. The
Euclidean distance is used to determine the similarity between a
given labelled sample, si, and an unlabelled sample, si′. The set of
KNNs for a given measurement sample can be determined using
the Euclidean distance as follows [116]:

∥ s′i − si(1) ∥2 ≤ ∥ s′i − si(2) ∥2 ≤ … ≤ ∥ s′i − si(MTr) ∥2 ,

ℵ(s′i) = {si(1), si(2), …, si(k)}
(55)

Majority voting is one of the most commonly used methods for
assigning labels from the set of KNNs of si. KNN is easy to
implement but it fails to work when the size of the data sample is
smaller than the dimension of the feature vector [117].

The logistic regression algorithm assumes that the distribution
of the label yi of data si follows the following logistic function
[118]:

P yi si = 1
1 + exp −yi w ⋅ si + b

(56)

The weight vector w is estimated by maximising the following cost
function:

J(w) = − 1
MTr

∑
i = 1

MTr

log(1 + exp( − yi w ⋅ si + b )) (57)

A brief comparison of various machine learning methods is
presented in [31]. The paper is one of the first research works to
utilise supervised learning algorithms for FDIAs detection. The
authors used a hierarchical network in which the measurements are
grouped as clusters, and each cluster is regarded as a sample si. The
false data is directly injected into the measurements before the
measurements are grouped into clusters. The detection method is
based on the observations made in [18]. According to Liu et al.
[18], the distance between samples determines the attack vector

∥ si − sj ∥2 =

∥ zi − zj + ai − aj ∥2 , if ai, aj ≠ 0

∥ zi − zj + ai ∥2 , if ai ≠ 0, aj = 0

∥ zi − zj ∥2 , if ai, aj = 0
(58)

Therefore, by looking into the distance between two samples, it is
possible to detect a FDIA. In their experiment, the performance of
different machine learning algorithms is evaluated against FDIAs
with different sparsity k/m (the ratio of measurements that the

Fig. 3  SVM concept
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attacker has access to). Accuracy, precision, and recall are used as
performance metrics. The results proved that the machine learning
algorithms perform better than any other algorithm (e.g. state
vector estimation approach) in detecting FDIAs. Although SVMs
achieved the highest prediction accuracy, they also present some
limitations, such as the selection of the kernel and sensitivity to the
sparsity of the system. KNN is very sensitive to system size and
performed better for the small-sized systems. Despite conducting
plenty of experiments, Ozay et al. [31] did not evaluate the
performance of detection algorithms for stealthy FDIAs.
Furthermore, only the sparsity of injected data was considered. The
magnitude of the injected data could potentially impact as well as
the operation of the system and the performance of the detection
methods. Last, the lack of attack data can result in imbalanced data
samples during the detector training process affecting its
classification accuracy.

Considering the limitations of [31], a similar work is conducted
in [33]. Both works utilise closely related system models. Two
assumptions are taken into consideration when the attack vectors
are created in the adversary model: (i) that the injected value ai is
greater than the noise level and (ii) that the mean of the attack
vector ai is larger than the variance of the attack vector. Attack
vectors with different sparsity and variance (The variance reflects
the magnitude of disturbances caused by false data.) are tested in
their experiments. To solve the imbalanced data problem, they
propose the extended nearest neighbour (ENN) algorithm. For each
class, ENN measures the average ratio of the nearest neighbours
belonging to the same class. Instead of using majority voting, the
label of a sample was predicted by finding the class which presents
the greatest ratio variability with the sample labelled in that class.
The performance of SVMs, KNN, and ENN is then experimentally
evaluated. Accuracy and F1 scores are used as the performance
metrics. SVMs outperformed KNN and ENN in most of the test
cases. A critical range of sparsity was observed in which the
accuracy and F1 score increased significantly. However, this is
reasonable since the distance increases ∥ si − sj ∥ when the sparsity
increases, which leads to more distinct classes. The experiment was
conducted on the IEEE 30 bus system. The detection performance
of the algorithms in larger systems was not demonstrated.

Esmalifalak et al. [97] proposed a distributed SVM algorithm.
Each substation owned a training set and stealthy FDIAs, which
could bypass BDD methods based on their corresponding residuals.
Before training, PCA is applied to the training set to reduce the
feature dimension. To avoid a huge volume of data exchange, each
substation is trained using a local classifier, and only the locally
optimised weight vectors are exchanged. Their optimisation
problem, (54), is provided below

min
wk, ξk, bk

∥ wk ∥2
2 + ζ ∑

k = 1

n

∑
i = 1

Tr

ξki

Subject to: yki(wk
Tr ⋅ ski + bk) − 1 + ξki ≥ 0

ξki ≥ 0 ∀i = 1, 2, 3, …, m; k = 1, …, n

(59)

where n is the number of substations and wk is the local
optimisation parameter. The alternating direction method of
multipliers is used to solve this distributed optimisation problem.
Experiments are performed on the IEEE 118 bus system. The
authors empirically verify the convergence of distributed SVM
classifiers to centralised SVMs with different numbers of
substations.

To recapitulate, supervised learning methods have achieved
superior performance in comparison with traditional residual-based
BDD methods. Among the aforementioned algorithms, SVMs have
demonstrated to achieve the highest accuracy. According to
Esmalifalak et al. [97], the curse of the dimensionality problem can
be solved by leveraging PCA, which significantly enhanced the
efficiency of machine learning algorithms. Nevertheless, most of
the attack data are often generated randomly in the experiments
while a sophisticated adversary would deliberately choose attack
vectors considering the system dynamics. The performance of the
proposed methods against such sophisticated FDIAs still remains

unknown. Moreover, most of the prior works conducted simulation
experiments. Thus, the efficiency of existing methods, if applied to
real power system deployments, cannot be guaranteed.

5.3 Semi-supervised learning

In semi-supervised learning, the majority of the given data is
unlabelled. Although semi-supervised learning algorithms are the
least common learning approaches applied for detection of FDIAs,
we still introduce them in this survey work for completeness. An
example of a semi-supervised learning algorithm is a semi-
supervised SVM (S3VM). S3VM assumes that samples with
different labels are clustered into different groups and that the
diameter of each cluster is small enough to avoid sub-clusters
[119]. The objective function of S3VM is defined as

min
w, b

ζ ∑
i = 1

MTr

L
Tr(si, yi) + ∑

i = 1

MTs

L
Ts(s′i) + ∥ w ∥2 (60)

where y = wTsi + b and ζ is the regularisation parameter, L
Tr and

L
Ts are the loss function of the training and test samples,

respectively.
Foroutan and Salmasi [99] investigated FDIA detection

methods by using the S3VM based on Gaussian mixture
distributions. According to Filho [120], a finite mixture distribution
model, defined as a convex combination of two or more probability
density functions, is capable of approximating any arbitrary
distributions due to its flexibility in modelling complex data. The
authors assume that all FDIAs have the same amount of energy or
c vector, where a = Hc, and that they have the same mean squared
error. In the adversary model, the attack vectors are designed based
on the minimum energy residual attack and sparsest attack,
introduced in [78, 121], respectively. In the training phase, a
positive data set, i.e. a data set with attacked measurements, was
used to build the Gaussian mixture model. Then, a mixture of data
sets consisting of both positive and negative labels (attacked and
normal measurements) determines the threshold. In the evaluation
phase, the unlabelled data set used for testing and F1 score
evaluates the performance of the results. PCA was applied to the
data set to overcome measurement dimensionality issues. The
authors demonstrate the performance of the proposed detection
method on the IEEE 118 bus power system. To generate diversified
datasets, different topological networks are constructed using
Monte–Carlo simulations. The performance of the proposed
detection method depends on the selection of a proper threshold. A
high-threshold value reduces recall while a low-threshold value
lowers precision. The impact of the detection algorithms is
illustrated with a ROC curve. Although the proposed model
demonstrates a high F1 score compared with other machine
learning algorithms (e.g. SVMs and perceptrons), it performs well
only when the attacked measurements and the real measurements
lie in distinct regions of the feature space, i.e. the attacked data can
be effortlessly isolated.

Another detection method based on the S3VM algorithm is
proposed in [31]. The input samples are integrated into the cost
function forming the following optimisation problem:

min ∥ W ∥2
2 + ζ1 ∑

i = 1

MTr

L
Tr(Si, yi) + ζ2 ∑

i = 1

MTe

L
Te(Si′) (61)

where ζ1 and ζ2 are the cost parameters, L
Tr and L

Te are the loss
functions for the training and testing samples. In the simulation, the
authors use default values for the parameters as suggested in [100].
The experiments are conducted on IEEE 9, 57, and 118 bus
systems, and the measurement matrix is generated using Matlab's
Matpower toolbox. Compared with supervised learning algorithms,
S3VM demonstrated improved robustness against data sparsity
despite the fact that S3VM still remains sensitive to unbalanced
data samples.
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5.4 Unsupervised learning

Unsupervised learning algorithms group the unlabelled samples
based on the similarities and differences between samples, without
any prior training. Clustering is the most popular unsupervised
learning method where the measurement samples are grouped
based on the distance between samples in the feature space.
Different distance metrics can be chosen (e.g. Euclidean distance).

k-means (also called hard c-mean) is an example of a clustering
method, which divides data into k groups. k-means iteratively
assigns each data point to one of the k groups, whose centroid has
the minimum distance to the data point in the feature space. Each
centroid in a cluster is a collection of features, which define a
group. The centroids are updated at each round. Several techniques
are used to validate the k-value including cross-validation and other
information criteria. Fuzzy c-means (FCM) clustering is another
type of k-means clustering, which assigns data points to two or
more clusters [101]. Each point belongs to a cluster based on a
corresponding probability value, rather than having a binary value
as is the case of k-means clustering. In FCM, the clustering
problem can be solved by minimising the following equation:

J = ∑
i = 1

N

∑
j = 1

C

ui j
m ∥ xi − C j ∥2 , 1 ≤ m < ∞ (62)

where N is the number of data points, C = 2 is the number of the
clusters (cluster of attacks and cluster of normal measurements), xi

is the ith dimensional measured data, and C j is the centre of the jth
cluster, which is determined using

C j =
∑i = 1

N
ui j

m ⋅ xi

∑i = 1
N

ui j
m

(63)

where ui j is the degree of membership of the ith measurement. The
updated membership ui j computed by the following equation:

ui j = 1
∑k = 1

C (( ∥ xi − C j ∥ )/( ∥ xi − Ck ∥ ))2/(m − 1) (64)

Mohammadpourfard et al. [103] presented a visualisation based on
the unsupervised anomaly detection method and FCM clustering to
detect and locate FDIAs. The authors also propose a localisation
method that helps in identifying the attack after topology
reconfigurations and the integration of different resources. When
FDIAs occur, the probability distributions of system states deviate
significantly from normal states, hence enabling FDIA detection.
First, the authors normalise the data, and then various statistical
measures are applied to characterise the probability distribution of
each state vector. PCA is applied to the new feature set to reduce
the dimensionality of data and to visualise them in a two-
dimensional space where the grid operators can determine whether
an attack has occurred or not (using patterns of normal and
abnormal data). FCM is used to detect outliers and locate the
FDIAs. Load data from the New York Independent System
Operator are used for the simulations. FDIAs data are generated on
the IEEE 9 and 14 bus system with the assumption that the
adversary decreases or increases a specific state variable by at least
6% of its original value. The proposed method is applied to two
different FDIAs scenarios: detecting FDIAs with and without

topology changes. Compared to supervised learning algorithms
such as SVMs and KNN, the proposed model achieves higher
detection accuracy [103].

Yang et al. [102] proposed three different anomaly detection
approaches to detect FDIAs: (i) local outlier factor, (ii) isolation
forest, and (iii) robust covariance estimation. The local outlier
factor is a density-based anomaly detection method that measures
the local standard deviation of any given data point from its
neighbours by comparing their local density [122]. Isolation forest
is an outlier detection technique based on decision trees that does
not employ any distance or density measure and can handle large,
high-dimensional datasets. Robust covariance estimation is another
anomaly detection method based on the elliptic envelope fitting
method, which assumes that the given data is a Gaussian
distribution and defines the shape of the data. An IEEE 14 bus
system case is used to evaluate the mentioned detection
approaches. Attack vectors generated with Gaussian distributed
non-zero elements have the same mean and variance as the original
measurement set. The authors use PCA to reduce the data
dimension from 41 to 2, to reduce noise, and simplify the detection
problem. All proposed methods achieve high accuracy for FDIAs
detection. However, these three detection methods achieve high
detection rates only when the contamination rate is known and
small [102].

5.5 Deep neural network

Deep learning algorithms mimic the human brain structure,
functions, and are one of the fastest developing artificial
intelligence technologies. Although deep learning algorithms
require time and large amounts of data for their training stage, they
have been applied for FDIAs detection achieving high-accuracy
rates [123].

Multilayer perceptrons (MLPs), also called feed-forward neural
networks, are deep learning models where information flows in
only one direction, i.e. from the input through the hidden layers to
the output, as shown in Fig. 4 [124]. They consist of an input layer,
which receives the input signals, one or more hidden layers to
construct the approximation function, and an output layer that
predicts the final decision based on the input and approximation
function.

Multiple studies where MLPs have been applied to detect
FDIAs have been reported in the literature [103–105]. In these
works, the FDIA detection problem is formulated as a supervised
classification problem. In MLP-assisted binary classification, a
linear combination of an input weight vector produces a single
output, as shown in the following equation:

y = φ ∑
i = 1

n

wisi + b (65)

where y is the estimated output of the activation function, w is the
weight, s is the input vector, b is the bias, and φ is the non-linear
activation function. The activation function is an essential feature
of the MLP architectures. It decides whether a neuron should be
fired or not by calculating the weighted sum of inputs and adding a
corresponding bias to it. Sigmoid, tanh, and rectified linear unit
(RELU) are examples of activation functions. RELU is the most
widely used function because it is fast and less computationally
expensive. MLPs use back-propagation training algorithms and the
weights are updated using gradient descent to minimise the error
function.

Ashrafuzzaman et al. [125] proposed different MLP structures
for the detection of FDIAs in an AC static SE system topology. The
paper assumes that partial knowledge of the system, including the
H matrix and other parameters, is known to the attacker. A
standard IEEE 14 bus system is used to conduct the simulation.
The Matpower toolbox is used to generate the measurement vector
z, which contains 122 measurement features (40 active and reactive
power flows, 14 power injections, and 27 voltage measurements).
The authors train the MLP using stochastic gradient descent (an
optimisation technique for the network parameters update) and
tanh as the activation function. Four models with different network

Fig. 4  MLP concept
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architectures are utilised for the detection. The first model consists
of one hidden layer with 100 neurons, and the second model
consists of three hidden layers with 150 neurons. For the third and
fourth models, the authors use the first and second models with a
regularisation value of 0.0001. Regularisation is a technique used
to reduce or prevent over fitting of a neural network. The models’
detection performance is compared with other machine learning
algorithms. Accuracy, precision, recall, and F1 score are used to
evaluate the MLP detection. The results of the four discussed
models are similar with an accuracy of around 98%.

Similarly, Foroutan and Salmasi [99] applied MLPs to detect
FDIAs and compared them with common machine learning
detection models. The network consists of an input layer, one
hidden layer, and an output layer. Tanh is used as an activation
function. Although MLP produced higher detection accuracy than
the other algorithms, their training process is slow. Ganjkhani et al.
[104], on the other hand, introduced a novel MLP algorithm
leveraging a non-linear autoregressive exogenous (NARX)
configuration, which takes into account the high correlation
between power system measurements as well as the state variables.
The NARX configuration is used for time series prediction and can
predict step-ahead values of the states by factoring measurement
values and historical data as input variables. In the experiment,
NARX is constructed with an input and a hidden layer with
different numbers of neurons and sigmoid linear activation
functions. The historical data contained 6048 measurement vectors
and state variables. The detection model is trained using 70% of
the historical data and 30% for the testing and validation.

A recurrent neural network (RNN) is a sophisticated deep
learning algorithm that uses internal memory or feedback loops, as
shown in Fig. 5. Unlike MLPs, RNNs use the information from
past events for their predictions. A long short-term memory unit
can be added to a standard RNN to solve the problem of vanishing
gradient descent and store information for an extended period
[126]. RNNs formulate the FDIAs detection problem as a sequence
of prediction. Results from previous time steps are used for the
prediction of the current output rendering RNNs efficient in
detecting manipulated measurements.

Ayad et al. [98] utilised RNNs as a sequence classification
algorithm for detecting FDIAs in DC SE. Back-propagation
through time, an extensive type of back-propagation, is applied to
train the algorithm. The authors run the training algorithm multiple
times to produce the optimal set of parameters that achieve the
least error. Then, the optimal parameters are applied to the network
for the prediction of the test data classes. Since the output ranged
from 0 to 1, a threshold is set to determine the output class as either
1 or 0 (1 is compromised, and 0 is normal). The IEEE 30 bus test
case is used for the experiments with 112 measurement vectors.
The proposed model obtains outstanding detection results with an
accuracy rate of 99%.

James et al. [107] proposed an RNN architecture for detecting
FDIAs in AC SE setups. The discrete wavelet transform (DWT)
algorithm is used for the RNN model. The main goal of DWT is to
extract the hidden time-frequency domain characteristics and
features at every specific time. The proposed model is able to
leverage dynamic temporal and spatial features for attack detection.
The authors detect FDIAs in AC SE with complete and incomplete
system knowledge. For the incomplete knowledge case, the
attacker only knew a few selected phase angles, power flows, and
power injections for selected buses. The remaining buses

information is generated using the algebraic sum of the connecting
buses. The RNN-based detection model is constructed with two
types of neuron layers: gated recurrent unit and fully-connected
dense layers. To tune the network hyper parameters, a dropout
approach is used. In dropout, the outputs of some layers are
discarded according to predefined probabilities. Dropout solves the
over fitting problem, eminent in extensive training datasets, and
increases the accuracy for newly added test data. The proposed
detection method's performance is assessed on the IEEE 118 bus
and 300 bus test cases. Over 200k samples are generated to train
the detection model, and which achieves a high detection rate of
93% [107]. However, the main challenge of this RNN type is to
optimally tune the network hyper parameters.

Deep belief networks (DBNs) consist of multiple layers of
stochastic and latent variables [127]. The latent variables are
generally binary variables. DBNs are compositions of simple,
unsupervised networks such as restricted Boltzmann machines or
autoencoders [127]. The authors in [128] utilised autoencoder
networks for the detection of FDIA leveraging temporal and spatial
sensor data correlations. He et al. [108] proposed a DBN and state
vector estimator (SVE) for real-time detection of FDIAs. The
proposed model utilises an extended DBN called conditional DBN
which extracts temporal features in high-dimensions. SVE
calculates the ℓ2-norm of the measurement residuals and compares
them with a given threshold as follows [108]:

r = ∥ z^ − Hx^ ∥2 > τ, Attack alarm

r = ∥ z^ − Hx^ ∥2 ≤ τ, No attack alarm
(66)

The authors design the model based on the assumption that the
topology of the power system does not change significantly within
a small time-frame. For the simulation, the IEEE 118 bus test case
is used to simulate four different attack scenarios. ROC curve is
used to evaluate the detection scheme. Then, the detection results
with a different number of attacked measurement k are compared
with other detection algorithms such as MLPs and SVMs. The
proposed model achieves the highest detection accuracy. However,
training a DBN is extremely computationally expensive, since this
process can take up to weeks even if specialised hardware
exploiting graphics processing unit acceleration is used [129].

Wei et al. [109] proposed a different DBN-based model, where
the detection process can be divided into three parts: (i) the data
pre-processing stage, (ii) the training stage, and (iii) the testing
stage. During the pre-processing data stage, measurement data
including the attacked measurements are extracted using different
IEEE standard nodes. The training process of the DBN is divided
into the pre-training stage and reverse-trimming stage. In the pre-
training stage, the authors use an unsupervised greedy learning
algorithm from the bottom layer to the upper layer to extract the
measurement features, train every layer, and share the
measurement features with every layer. The Restricted Boltzmann
Machine (RBM) is trained layer-by-layer and tuned using back-
propagation to minimise prediction errors. After the training
process, part of the measurement data is used to test and validate
the performance of the detection model. The simulation results
show that the DBN-based detection achieves high accuracy in
detecting FDIAs (98%).

6 Discussion on the detection performance of
machine learning algorithms
This section discusses the performance of the machine learning-
based FDIA detection algorithms presented in Section 5. A
noteworthy advantage of such detection algorithms is that they do
not assume exact knowledge of the power system model nor its
corresponding parameters, thus any induced uncertainties, e.g.
measurement noise, topology changes, power flow perturbations
etc. do not affect the algorithm's detection efficacy.

The majority of FDIA detection research focuses on the
transmission level and studies that examine detection algorithms
involving automatic generation control and wind generation have
been reported [101, 130, 131]. On the other hand, studies that
examine FDIAs detection for DSs are also essential and a direction

Fig. 5  RNN concept
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of on-going research [61]. Our investigation suggests that FDIAs
studies can be broadly classified under two major categories, (i)
random FDIAs, where the attacker aims to inject falsified attack
vectors and compromise the SE algorithm by modifying any
measurement vector that can be attained and (ii) targeted FDIAs, in
which the attacker objective is to inject specific errors into the SE
algorithms by maliciously modifying distinct measurement vectors.
Apart from the aforementioned FDIAs types, studies involving
stealthy FDIA detection have also been proposed [97].

The detection accuracy of the machine learning FDIA
algorithms yields significantly different results depending on the
setup used to evaluate the algorithm's performance. For example,
some studies – to characterise the detection performance – examine
algorithms under hundreds of different FDIA scenarios and varying
power system topologies, while others report results based on very
limited datasets. Notably, the algorithms presented in [31, 103,
107] are thoroughly tested on multiple power system architectures,
such as IEEE 14, 30, and 118 bus systems, contrary to the
algorithms in [57, 99, 102], which utilise only one IEEE system
model during the performance analysis. Additionally, some papers
consider basic FDIAs while others evaluate detection performance
against stealthy FDIAs, which significantly skews the algorithm
efficacy [97, 125]. Finally, a number of researchers develop their
custom metrics to assess the proposed detection algorithms or do
not provide any quantitative results whatsoever. For all the
aforementioned reasons, providing an overarching algorithm
comparison or declaring an optimal detection algorithm for every
case is infeasible, since detection performance is contingent upon a
multitude of reasons (e.g. TS or DS, stealthy or basic FDIAs, size
of the system under test etc.) and comprehensive results are not
available in the literature.

SVMs are consistently more effective in detecting FDIAs in
power systems with reported detection rates ranging from 85 to
99% [31, 33, 97]. Contrary to supervised learning detection
methods, SVMs do not require exhaustive training and big data sets
which increase computational complexity and training duration
[132]. On the other hand, SVMs performance can degrade
significantly if the kernel selection process is not properly
conducted or when we deal with sparse systems [133, 134].
Another drawback of SVMs, which has been recently reported and
can effectively lower their detection accuracy, is that their
susceptibility to adversarial examples [135]. Adversarial examples
are carefully crafted inputs intentionally designed to falsify
machine learning algorithms [136]. For instance, label flipped
attacks are a form of adversarial example, which targets SVMs and
affect their detection competency against FDIAs in power systems
[135, 137].

Apart from SVMs, deep learning algorithms have been
proposed for the detection of different types of FDIAs (e.g. stealthy
or basic) and in different power system topologies (i.e. TS or DS).
Contrary to SVMs, deep learning methodologies require large
amounts of training data and their detection efficiency is heavily
affected by the dimension of the training dataset. Multiple works
report detection rates between 90 and 99% when abundance of
training data is available for the deep learning detectors [98, 99,
103–107]. Despite the impressive results that deep learning
algorithms exhibit, their training process requires an excessive
amount of time, has high-computational costs and demands
specialised equipment, in addition to big datasets. For instance, the
authors in [108] reported that more than 3k measurement samples
are essential in order for their deep learning algorithm to achieve
detection rates of 98%.

Previous works prove that machine learning algorithms
including supervised learning, SVMs, and deep learning method
are able to effectively and in real-time detect FDIAs in power
systems [108, 122]. The main pitfall of machine learning
approaches is that they require extensive data sets and historical
data including attack scenarios to train the detectors [138], which
causes all the aforementioned disadvantages [31]. Besides the
exploitation of resources, e.g. memory, storage space, specialised
hardware etc. overfitting is another vulnerability that machine
learning algorithms suffer from. By overfitting a machine learning
algorithm we end up with a detector that is able to perform

exceptionally well for specific datasets but cannot generalise this
performance for all possible test cases, thus even selecting a proper
training set becomes challenging [139]. Adversarial examples can
also compromise machine learning-based algorithms. Limited
research works to address this issue [135, 137, 140, 141], thus
developing robust machine learning detectors against adversarial
examples is imperative and one of our future directions.

7 Conclusions and future directions
Improving the cybersecurity of cyber-physical energy systems is
vital for the efficient and resilient operation of the power grid.
FDIAs can elicit severe physical and economic impacts on power
systems. Researchers have thoroughly investigated FDIAs and
have proposed algorithms to detect these data integrity attacks.
Among these algorithms, machine learning-based methodologies
are gaining attention due to their superior detection performance.

In this paper, we provide a comprehensive review of various
FDIA detection methods leveraging machine learning algorithms.
The goal of this survey is to compare different machine learning
FDIA detectors employed in power systems. Our investigation
concludes that supervised learning and deep learning methods
achieve the highest detection rates. Our future work will explore
how machine learning-based FDIA detectors perform in DS which
incorporate DERs (e.g. microgrids) and what modifications are
essential. Also, we aim to develop detection algorithms leveraging
generative adversarial networks to further improve FDIAs
detection performance against stealthy and more sophisticated
attacks.
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